Effect of Growth Regulators and Time on In vitro Pollen Germination in three Ornamental Tropical Tree Species

Authors
1 Department of Forestry, Mizoram University, Aizawl, Mizoram, India.
2 1Department of Forestry, College of Forestry, Uttarakhand University of Horticulture and Forestry, Ranichauri, - 249199, Tehri Garhwal, Uttarakhand, India.
3 Department of Forestry, College of Forestry, Uttarakhand University of Horticulture and Forestry, Ranichauri, - 249199, Tehri Garhwal, Uttarakhand, India.
Abstract
In vitro pollen germination of three tropical tree species, viz. Spathodea campanulata, Bauhinia purperia and B. racemosa was done to know the effect of growth regulators and time on pollen germination. Three concentrations, i.e. 100, 200 and 300 ppm of four growth hormones (IAA, IBA, GA3 and Kinetin) and sucrose (5 and 10%) alone were used as germination medium. The results revealed that pollen germination under control condition is very low and oscillating between 4.6±1.2 and 17.8±3.2%. The growth hormones and sucrose was found effective inducing pollen germination. IAA and IBA were found effective for both species of Bauhinia whereas GA3 and kinetin were found suitable for Spathodea campanulata. Maximum germination was recorded in the initial 24h of setting experiment, which further declined in 48h and was recorded very less and even 0.0% after 72 hours of treatment. There was significant (< 0.0001) effect of time, hormone and species on pollen germination. Sucrose has shown good response (43 to 64%) in all selected tropical tree species. All the three tree species are cross pollinated, which depend on the variety services of pollinators. Low % in vitro pollen germination in control condition in Spathoda campanulata and Bauhinia purpurea reflects that both species are prone to pollination and fertilization failure if appropriate pollinators and receptive stigmas are unavailable to them early after anther dehiscence.

Keywords


1. Acar, I., Ak, B. E. and Sarpkaya, K. 2010. Effect of Boron and Gibberellic Acid on In vitro Pollen Germination of Pistachio (Pistacia vera L.). African J. Biotech., 9(32): 5126-5130.
2. Ali, S. 1933. Flowers-birds and Bird-flowers in India. J. Bombay Natural History Society, Oxford University Press, Bombay.
3. Aloni, R., Aloni, E., Langhans, M, and Ullrich, C. I. 2006. Role of Auxin in Regulating Arabidopsis Flower Development. Planta, 223: 315–328.
4. Bolat I. and Pirlak, L. 1999. Effects of some Chemical Substances on Pollen Germination and Tube growth in Apricot. Acta Horticul., 488: 341–4.
5. Brewbaker, J. C. and Kwack, B. H. 1963. The Essential Role of Calcium Ion in Pollen Germination and Pollen Tube Growth. Am. J. Bot., 50: 859-865.
6. Chhun,T., Aya, K., Asaw, K., Yamamoto, E., Morinaka, Y., Watanbe, M., Kitano, H., Ashikari, M., Matsuka, M. and Ueguchi-Tanaka, M. 2007. Gibberellin Regulates Pollen Viability and Pollen Tube Growth in Rice. Plant Cell, 19: 3876-3888.
7. Emam, Y. and Moaied, G. R. 2000. Effect of Planting Density and Chlormequat Chloride on Morphological and Physiological Characteristics of Winter Barley (Hordeum vulgare L.) Cultivar "Valfajr". J. Agr. Sci. Tech., 2(2): 75–83.
8. Faegri, K. and van der Pijl, L. 1979. The Principles of Pollination Ecology. Pergamon Press, Oxford.
9. Heslop-Harrison, J. 1979. An Interpretation of Hydrodynamics of Pollen. Am. J. Bot., 66: 737-743.
10. Hou, H., Chen, J. W., Li, J.Y., Shen, H., Chen, L. and Wu, W. 2013. Effect of Gibberellic Acid and Chlormequat Chloride on Growth, Coumarin Content and Root Yield of Angelica dahurica var. Formosana. J. Agr. Sci. Tech., 15: 1415-1423.
11. Johri, B. M. and Vasil, I. K. 1961. Physiology of Pollen. Bot. Rev., 27(3): 325-381.
12. Konar, R. N. 1958. Effect of IAA and Kinetin on Pollen Tubes of Pinus rouxburghii. Sar. Curr. Sci., 6: 216-217.
13. Kroh, M., Miki-Hirosige, H., Rosen, W. and Loewus, F. 1970. Incorporation of Label into Pollen Tube Walls from Myo-inositol Labeled Lilium longiflorum Pistils. Plant Physiol., 45: 92–94.
14. Malik, C. P. 1977. Enzymes in Pollen Development and Pollen Tube Growth. In: “Advances in Pollen-Spore Research”, (Ed.): Nair, P. K. K.. Today and Tomorrow's Prints Publs., New Delhi, II: 30-43.
15. McConchie, C. A. and Knox, R. B. 1989. Pollination and Reproductive Biology of Seagrasses. In: “Biology of Seagrasses. A Treatise on the Biology of Seagrasses with Special Reference to the Australian Region”, (Eds.): Larkum, A. W. D., McComb, A. J. and Shepherd, S. A.. Elsevier, Amsterdam, PP. 74-111.
16. Nalawadi., U. G. Gowda, J. V. N. and Sulladmath, U. V. 1980. Varied Season of Flowering of Spathodea campanulata (Beauv.) under Bangalore Conditions. Curr. Rese., 9(4): 58-59
17. Nemhauser., J. L., Feldman, L. J. and Zambryski, P. C. 2000. Auxin and ETTIN in Arabidopsis Gynoecium Morphogenesis. Development, 127: 3877–3888.
18. Pacini, E. 1996. Types and Meaning of Pollen Carbohydrates Reserves. Sex. Pl. Rep., 9: 362-366
19. Parui, S., Mondal, A. K. and Mandal, S. 1998. Peroxidase Isozyme Profiles of Immature and Mature Pollen of Seven Tropical Plants from Eastern India. Grana, 37(4): 228-232.
20. Pfahler, P. L. 1967. Fertilization Ability of Maize Pollen Grains. II. Pollen Genotype Female Sporophyte and Pollen Storage Interactions. Genet., 57: 513–521.
21. Raina, R., Behera, M. C., Chand, R. and Sharma, Y. 2003. Reproductive Biology of Gentiana kurroo Royle. Curr. Sci., 85: 667-670.
22. Sawmliana, M. 2003. The Book of Mizoram Plants. Zakhuma, P. Aizawl, Mizoram, India.
23. Schori, Y., Goren, T. and Ben-Jacov, J. 1992. Pollen Germination and Storage in Banksia and some other Proteaceae Plants. Acta Hort., 316: 19-20
24. Shivanna., K. R. Linskens, H. F. and Cresti, M. 1991. Pollen Viability and Pollen Vigor. Theor. Appl. Genet., 81: 38-42.
25. Singh, D. P., Jermakow, A. M. and Swain, S. M .2002. Gibberellins are required for Seed Development and Pollen Tube Growth in Arabidopsis. Plant Cell., 14: 3133-3147.
26. Singh, N. P. Singh, K. P. and Singh, D. P. 2002. Flora of Mizoram. Volume I, Botanical Survey of India, Kolkata, India.
27. Smith, P. F. 1939. The Influence of Indole-3 Acetic Acid on Pollen Germination. Sci., 90: 163-164.
28. Sokal, R.R. and Rohlf, F.J. 1995. Biometry, 3rd Edition, WH Freeman, San Francisco.
29. Sotomayor, C., Castro, J., Velasco, N. and Toro, R. 2012. Influence of Seven Growth Regulators on Fruit Set, Pollen Germination and Pollen Tube Growth of Almonds. J. Agr. Sci. Tech., B 2: 1051-1056.
30. Stanley, R. G. and Linskens, H. F. 1974. Pollen: Biology, Biochemistry and Management. Springer, New York.
31. Sun, T. P. 2004. Gibberellin Signal Transduction in Stem Elongation and Leaf Growth. In: “Plant Hormones: Biosynthesis, Signal Transduction, Action”, (Ed.): Davies. P. J.. Kluwer Academic Publishers, Dordrecht, The Netherlands, PP. 304–320.
32. Taylor, L. P. and Helper, P. K. 1997. Pollen Germination and Tube Growth. Annu. Rev. Plant Physiol. Plant Mol. Biol., 48: 461–491.
33. Tuinstra, M. R. and Wedel, J. 2000. Estimation of Pollen Viability in Grain Sorghum. Crop Sci., 40: 968-970.
34. Wu, J.Z., Yi, L., Xue-Lian, Z., Dai-Wen, P., Jie, Z. 2008. IAA Stimulates Pollen Tube Growth and Mediates the Modification of Its Wall Composition and Structure in Torenia fournieri. J. Exp. Bot., 59(9): 2529–2543.
35. Ye, Q., Zhu, W., Li, L., Zhang, S., Yin, Y. and Ma, H. 2010. Brassinosteroids Control Male Fertility by Regulating the Expression of Key Genes involved in Arabidopsis Anther and Pollen Development. PNAS, 107: 6100–6105.