Characterization of a Desiccation Stress Induced Lipase Gene from Brassica napusL.

Authors
1 Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, People’s Republic of China.
2 Faculty of Life Science and Food Engineering, HuaiYin Institute of Technology, Huaian 223003, People’s Republic of China.
Abstract
Lipases are known to have important functions in many physiological processes in plants. Here, we cloned a lipase gene via Rapid Amplification of cDNA Ends (RACE) technique from Brassica napus L., designated as BnDIL1 (B. napus Desiccation-Induced Lipase 1). The lipase enzyme activity was confirmed by estimating the lipase activity and reduced lipids content in Saccharomyces cerevisiae (pep4)transformant. Two B. napus lines with different oil contents were employed to examine the transcription profiles of BnDIL1 during the processes of seed morphogenesis, maturation, dormancy, pregermination and germination. The transcription level of lipid degradation pathway was enhanced during the processes of seed maturation, dormancy, pregermination and germination, and was higher in seeds of low oil-contents line than that of high oil-contents line. However, BnDIL1 was significantly activated when seed desiccation started. Both “slow desiccation” and “fast desiccation” treatments on seedlings dramatically activated the transcription of BnDIL1, while only “slow desiccation” stress, which would induce the cell apoptosis, significantly activated the transcription of lipid degradation gene. This result demonstrated that BnDIL1 in B. napus was desiccation stress dependent gene rather than fatty acids degradation gene.

Keywords



1. Andersson, M. X., Kjellberg, J. M. and Sandelius, A. S.2004. The Iinvolvement of Cytosolic Lipases in Converting Phosphatidyl Choline to Substrate for Galactolipid Synthesis in the Chloroplast Envelope. Biochim. Biophys. Acta, 1684: 46-53.
2. Angelovici, R., Galili, G., Fernie, A. R. and Fait, A. 2010. Seed Desiccation: A Bridge between Maturation and Germination. Trend. Plant Sci., 15: 211-218.
3. Austin, J. R., Frost, E., Vidi, P. A., Kessler, F. and Staehelin, L. A. 2006. Plastoglobules Are Lipoprotein Subcompartments of the Chloroplast that Are Permanently Coupled to Thylakoid Membranes and Contain Biosynthetic Enzymes. Plant Cell., 18: 1693-1703.
4. Bewley, J. D. 1997.Seed Germination and Dormancy. Plant Cell.., 9: 1055-1066.
5. Bradford, M. M. 1976. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-dye Binding. Anal. Biochem., 72: 248-254.
6. Brick, D. J., Brumlik, M. J., Buckley, J. T., Cao, J. X., Davies, P. C., Misra, S., Tranbarger, T. J. and Upton, C. 1995. A New Family of Lipolytic Plant Enzymes with Members in Rice, Arabidopsis and Maize. FEBS Lett., 377: 475-480.
7. Danyluk, J., Perron, A., Houde, M., Limin, A., Fowler, B., Benhamou, N. and Sarhan, F. 1998. Accumulation of an Acidic Dehydrin in the Vicinity of the Plasma Membrane during Cold Acclimation of Wheat. Plant Cell., 10: 623-38.
8. Durrett, T. P., Benning, C. and Ohlrogge, J. 2008. Plant Triacylglycerols as Feedstocks for the Production of Biofuels. Plant J., 54: 593-607.
9. Ellinger, D. and Kubigsteltig, I. I. 2010. Involvement of DAD1-Like Lipases in Response to Salt and Osmotic Stress in Arabidopsis Thaliana. Plant Signal Behav., 5: 1269-1271.
10. Evansa, C. T. R.C. and Gilbert, S. C. 1985. A Rapid Screening Method for Lipid-Accumulating Yeast Using a Replica-Printing Technique. J. Microbiol. Meth., 4: 203-210.
11. Faria, J. M., Buitink, J., van Lammeren, A. A., Hilhorst, H. W. 2005. Changes in DNA and Microtubules during Loss and Re-establishment of Desiccation Tolerance in Germinating Medicago truncatula Seeds. J. Exp. Bot., 56: 2119-2130.
12. Galliard, T. 1971. The Enzymic Deacylation of Phospholipids and Galactolipids in Plants. Purification and Properties of a Lipolytic Acyl-hydrolase from Potato Tubers. Biochem. J., 121: 379-390.
13. Gietz, R. D. and Schiestl, R. H. 2007. Frozen Competent Yeast Cells that Can Be Transformed with High Efficiency Using the LiAc/SS Carrier DNA/PEG Method. Nat. Protoc., 2: (1-4).
14. Girard, A. L., Mounet, F. Lemaire-Chamley, M., Gaillard, C., Elmorjani, K., Vivancos, J., Runavot, J. L., Quemener, B., Petit, J., Germain, V., Rothan, C., Marion, D., Bakan, B., 2012. Tomato GDSL1 Is Required for Cutin Deposition in the Fruit Cuticle. Plant Cell., 24(7): 3119-3134.
15. Hawk, P. B. 1919. Desiccated Vegetables. Sci., 49: 329-30.
16. Hong, J. K., Choi, H. W., Hwang, I. S., Kim, D. S., Kim, N.H., Choi Du, S., Kim, Y. J. and Hwang, B. K. 2008. Function of a Novel GDSL-type Pepper Lipase Gene, CaGLIP1, in Disease Susceptibility and Abiotic Stress Tolerance. Planta, 227: 539-58.
17. Hong, Y., Wang, T. W., Hudak, K. A., Schade, F., Froese, C. D. and Thompson, J. E. 2000. An Ethylene-induced cDNA Encoding a Lipase Expressed at the Onset of Senescence. Proc. Natl. Acad. Sci., 97: 8717-8722.
18. Horrevoets, A. J., Verheij, H. M. and de Haas, G. H. 1991. Inactivation of Escherichia coli Outer-membrane Phospholipase A by the Affinity Label Hexadecanesulfonyl Fluoride. Evidence for an Active-site Serine. Eur. J. Biochem., 198: 247-253.
19. Ishiguro S, Kawai-Oda A, Ueda J, Nishida I, Okada K.2001. The Defective in Anther Dehiscence Gene Encodes a Novel Phospholipase A1 Catalyzing the Initial Step of Jasmonic Acid Biosynthesis, which Synchronizes Pollen Maturation, Anther Dehiscence, and Flower Opening in Arabidopsis. Plant Cell., 13: 2191-2209.
20. Khandelwal, A., Cho, S. H., Marella, H., Sakata, Y., Perroud, P. F., Pan, A. and Quatrano, R. S. 2010. Role of ABA and ABI3 in Desiccation Tolerance. Sci.,
21. 327: 547-552.
22. Li, H., Xue, D., Gao, Z., Yan, M., Xu, W., Xing, Z., Huang, D., Qian, Q. and Xue, Y. 2009. A Putative Lipase Gene Extra GLUME1 Regulates Both Empty-glume Fate and Spikelet Development in Rice. Plant J., 57: 593-605.
23. Lin, C. C., Chu, C. F., Liu, P. H., Lin, H. H., Liang, S. C., Hsu, W. E., Lin, J. S., Wang, H. M., Chang, L. L., Chien, C. T. and Jeng, S. T. 2011. Expression of an Oncidium Gene Encoding a Patatin-like Protein Delays Flowering in Arabidopsis by Reducing Gibberellin Synthesis. Plant Cell Physiol., 52: 421-435.
24. Lin, W. and Oliver, D. J. 2008. Role of Triacylglycerols in Leaves. Plant Sci., 175: 233-237.
25. Lo, M., Taylor, C., Wang, L., Nowack, L., Wang, T. W. and Thompson, J. 2004. Characterization of an Ultraviolet B-Induced Lipase in Arabidopsis. Plant Physiol., 135: 947-958.
26. Louis, J., Gobbato, E., Mondal, H. A., Feys, B. J., Parker, J. E. and Shah, J. 2012. Discrimination of Arabidopsis PAD4 Activities in Defense against Green Peach Aphid and Pathogens. Plant Physiol., 158: 1860-1872.
27. Louis, J., Lorenc-Kukula, K., Singh, V., Reese, J., Jander, G. and Shah, J. 2010. Antibiosis against the Green Peach Aphid Requires the Arabidopsis thaliana MYZUS Persicae-induced LIPASE1 Gene. Plant J., 64: 800-811.
28. Matsui, K., Fukutomi, S., Ishii, M. and Kajiwara, T. 2004. A Tomato LipaseHomologous to DAD1 (LeLID1) Is Induced in Post-germinative Growing Stage and Encodes a Triacylglycerol Lipase. FEBS Lett., 569: 195-200.
29. Meijer, H. J. and Munnik, T. 2003. Phospholipid-based Signaling in Plants. Annu. Rev. Plant Biol., 54: 265-306.
30. Munnik, T. and Meijer, H. J. 2001.Osmotic Stress Activates Distinct Lipid and MAPK Signalling Pathways in Plants. FEBS Lett., 498: 172-8.
31. Murphy, D. J. 2001. The Biogenesis and Functions of Lipid Bodies in Animals, Plants and Microorganisms. Prog. Lipid Res., 40: 325-438.
32. Ollis, D. L., Cheah, E., Cygler, M., Dijkstra, B., Frolow, F., Franken, S. M., Harel, M., Remington, S. J., Silman, I., Schrag, J., Sussman, J., 1992. The Alpha/Beta Hydrolase Fold. Protein Eng., 5: 197-211.
33. Padham, A. K., Hopkins, M. T., Wang, T. W., McNamara, L. M., Lo, M., Richardson, L. G., Smith, M. D., Taylor, C. A. and Thompson, J. E. 2007. Characterization of a Plastid Triacylglycerol Lipase from Arabidopsis. Plant Physiol., 143: 1372-1384.
34. Redon, M. G. J. M., Mas, A. and Rozes, N. 2009. Effect of Lipid Supplementation upon Saccharomyces cerevisiae Lipid Composition and Fermentation Performance at Low Temperature. Eur. Food Res. Technol., 228: 833-840.
35. Sorokin, H. P.1955. Mitochondria and Spherosomes in the Living Epidermal Cell. Am. J. Bot., 42: 225-231.
36. Tan, X., Wang, Q., Tian, B., Zhang, H., Lu, D. and Zhou, J. 2011. A Brassica napus Lipase Locates at the Membrane Contact Sites Involved in Chloroplast Development. PLoS One, 6: e26831.
37. Upton, C. and Buckley, J. T. 1995.A New Family of Lipolytic Enzymes? Trend. Biochem. Sci., 20: 178-179.
38. Vyssotski, M., MacKenzie, A. and Scott, D. 2009. TLC and 31P-NMR Analysis of Low Polarity Phospholipids. Lipid., 44: 381-9.
39. Yamaguchi-Shinozaki, K. and Shinozaki, K. 1994. A Novel Cis-acting Element in an Arabidopsis Gene is Involved in Responsiveness to Drought, Low-temperature, or High-salt Stress. Plant Cell., 6: 251-264.