Physiological Responses of Chard and Lettuce to Phosphite Supply in Nutrient Solution

Authors
1 Chapingo Autonomous University. Department of Horticulture. Chapingo, Texcoco 56230, State of Mexico, Mexico.
2 Colegio de Postgraduados Campus Montecillo. Department of Soil Science. Montecillo, Texcoco 56230, State of Mexico, Mexico.
3 Colegio de Postgraduados Campus Córdoba. Department of Plant Biotechnology. Manuel León, Amatlán de los Reyes 94946, Veracruz, Mexico.
Abstract
We evaluated the effect of different concentrations of Phosphite (Phi) (0, 0.25, and 0.50 mM) in nutrient solution on lettuce and chard. The fresh and dry biomass of lettuce shoots and heads, root volume, and P accumulation in roots showed no significant differences compared to the controls for different Phi concentrations in nutrient solution. In chard, no statistical differences were found among Phi concentrations for P concentrations in roots and shoots, total free amino-acids in leaves, chlorophyll-b, and soluble sugars. The phosphorus concentration in lettuce shoots was 15.6 and 50.6% higher in plants treated with 0.25 and 0.50 mM of Phi, respectively, compared with the controls. In lettuce, phosphorus levels in roots, total free amino-acids and soluble sugars in leaves were statistically greater for 0.25 mM of Phi in nutrient solution. The concentration of chlorophyll-a, b and total chlorophyll in lettuce leaves increased positively with Phi concentration in nutrient solution. The addition of more than 0.25 mM of Phi to the nutrient solution for chard negatively affected the fresh and dry biomass weight of shoots and roots, and P accumulation in roots and shoots. The concentration of chlorophyll-a, b and total chlorophyll in chard leaves was statistically higher with 0.25 mM of Phi in nutrient solution. We conclude that Phi has differential effects on lettuce and chard physiology, and positive plant responses may be observed when Phi is used up to 0.25 mM in sufficient P conditions.

Keywords


1. Alcántar, G. G. and Sandoval, V. M. 1999. Manual de Análisis Químico de Tejido Vegetal. Guía de Muestreo, Preparación, Análisis e Interpretación. Publicación Especial No. 10 de la Sociedad Mexicana de la Ciencia del Suelo A. C., Chapingo, México.
2. Alcántar, G. G., Sandoval, V. M. and Sánchez, G. P. 2007. Elementos Esenciales. Chapter 2. In: “Nutrición de Cultivos”, (Eds.): Alcántar G., G. and Trejo-Téllez, L. I.. Colegio de Postgraduados, Editorial Mundi-Prensa, México, PP. 8–47
3. Ávila, F. W., Faquin, V., da Silva, L. A. K., Ávila, P. A., Marques, D. J., Silva G. E. M. and Yuen, T. D. K. 2013. Effect of Phosphite Supply in Nutrient Solution on Yield, Phosphorus Nutrition and Enzymatic Behavior in Common Bean (Phaseolus vulgaris L.) plants. Aus. J. Crop Sci., 7: 713–722.
4. Berkowitz, O., Jost, R., Kollehn, D. O., Fenske, R., Finnegan, P. M., O’Brien, P. A., Hardy, G. E. St. J. and Lambers, H. 2013. Acclimation Responses of Arabidopsis thaliana to Sustained Phosphite Treatments. J. Exp. Bot., 64: 1731–1743.
5. Bertsch, F., Ramírez, F. and Henríquez, C. 2009. Evaluación del Fosfito Como Fuente Fertilizante de Fósforo vía Radical y Foliar. Agronomía Costarricense, 33: 249–265.
6. Bojović, B. and Stojanović, J. 2006. Some Wheat Leaf Characteristics in Dependence of Fertilization. Kragujevac J. Sci., 28: 139–146.
7. Carswell, M. C., Grant, B. R. and Plaxton, W. C. 1997. Disruption of the Phosphate-starvation Response of Oilseed Rape Suspension Cells by the Fungicide Phosphonate. Planta, 203: 67–74.
8. Chanda, B., Xia, Y., Mandal, M. K., Yu, K., Sekine, K. T., Gao, Q. M., Selote, D., Hu, Y., Stromberg, A., Navarre, D., Kachroo, A. and Kachroo, P. 2011. Glycerol-3-phosphate Is a Critical Mobile Inducer of Systemic Immunity in Plants. Nature Gen., 43: 421–427.
9. Constán-Aguilar, C., Sánchez-Rodríguez, E., Rubio-Wilhelmi, M. M., Camacho, M. A., Romero, L., Ruiz, J. M. and Blasco, B. 2014. Physiological and Nutritional Evaluation of the Application of Phosphite as a Phosphorus Source in Cucumber Plants. Commun. Soil Sci. Plant Anal., 45: 204-222.
10. Danova-Alt, R., Dijkema, C., De Waard, P. and Kock, M. 2008. Transport and Compartmentation of Phosphite in Higher Plant Cells-kinetic and 31P Nuclear Magnetic Resonance Studies. Plant Cell Environ., 31: 1510–1521.
11. Estrada-Ortiz, E. 2010. Fosfito en la Producción de Fresa. Tesis de Maestría en Ciencias, Posgrado en Edafología, Colegio de Postgraduados, Montecillo, Estado de México. 104 PP.
12. Estrada-Ortiz, E., Trejo-Téllez, L. I., Gómez-Merino, F. C., Núñez-Escobar, R. and Sandoval-Villa, M. 2011. Biochemical Responses in Strawberry Plants Supplying Phosphorus in the Form of Phosphite. Rev. Chapingo Ser. Hortic., 17: 129–138.
13. Estrada-Ortiz, E., Trejo-Téllez, L. I., Gómez-Merino, F. C., Núñez-Escobar, R. and Sandoval-Villa, M. 2012. Phosphite on Growth and Fruit Quality in Strawberry. Acta Hortic., 947: 277–282.
14. Estrada-Ortiz, E., Trejo-Téllez, L. I., Gómez-Merino, F. C., Núñez-Escobar, R. and Sandoval-Villa, M. 2013. The Effects of Phosphite on Strawberry Yield and Fruit Quality. J. Soil Sci. Plant Nutr., 13: 612–620.
15. Fageria, N. K. 2008. The Use of Nutrients in Crop Plants. CRC Press, Boca Raton, Florida, USA.
16. Geiger, M., Walch-Liu, P., Engels, C., Harnecker, J., Schulze, E. D., Ludewig, F., Sonnewald, U., Scheible, W. R. and Stitt, M. 1998. Enhanced Carbon Dioxide Leads to a Modified Diurnal Rhythm of Nitrate Reductase Activity and Higher Levels of Amino Acids in Young Tobacco Plants. Plant Cell Environ., 21: 253–268.
17. Hanrahan, G., Salmassi, T. M., Khachikian, C. S. and Foster, K. L. 2005. Reduced Inorganic Phosphorus in the Natural Environment: Significance, Speciation and Determination. Talanta, 66: 435–444.
18. Harborne, J. B. 1973. Chlorophyll Extraction. In: “Phytochemical Methods: Recommended Technique”, (Ed.): Harbone, J. B.. Chapman and Hall, London, PP. 205–207.
19. Höfner, R., Vásquez-Moreno, L., Abou-Mandour, A. A., Bohnert, H. J. and Schmitt, J. M. 1989. Two Isoforms of Phosphoenolpyruvate Carboxylase in the Facultative CAM Plant Mesembryanthemum crystallinum. Plant Physiol. Biochem., 27: 803–810.
20. Hwang, I. S., An, S. H. and Hwang, B. K. 2011. Pepper Asparagine Synthetase 1 (CaAS1) Is Required for Plant Nitrogen Assimilation and Defense Responses to Microbial Pathogens. Plant J., 67: 749–762.
21. King, M., Reeve, W., Van der Hoek, M. B., Williams, N., McComb, J., O’Brien, P. A. and Hardy, G. E. St .J. 2010. Defining the Phosphite-regulated Transcriptome of the Plant Pathogen Phytophthora cinnamomi. Mol. Gen. Genom., 284: 425–435.
22. Kobayashi, K., Masuda, T., Takamiya, K. and Ohta, H. 2006. Membrane Lipid Alteration during Phosphate Starvation is Regulated by Phosphate Signaling and Auxin/Cytokinin Cross-talk. Plant J., 47: 238–248.
23. Moore, S. and Stein, W. H. 1954. A Modified Ninhydrin Reagent for the Photometric Determination of Amino Acids and Related Compounds. J. Biol. Chem., 211: 893-906.
24. Morcuende, R., Bari, R., Gibon, Y., Zheng, W., Pant, B. R. D., Sing, O. B., Usadel, B. R., Czechowski, T., Udvardi, M. K., Stitt, M. and Scheible, W. D. 2007. Genome-wide Reprogramming of Metabolism and Regulatory Networks of Arabidopsis in Response to Phosphorus. Plant Cell Environ., 30: 85-112.
25. Navarova, H., Bernsdorff, F., Doring, A. C. and Zeier, J. 2012. Pipecolic Acid, an Endogenous Mediator of Defense Amplification and Priming, Is a Critical Regulator of Inducible Plant Immunity. Plant Cell, 24: 5123-5141.
26. Ouimette, D. G. and Coffey, M. D. 1989. Phosphonate Levels in Avocado (Persea americana) Seedlings and Soil Following Treatment with Fosetyl-Al or Potassium Phosphonate. Plant Dis., 73: 212-215.
27. Ratjen, A. M. and Gerendás, J. 2009. A Critical Assessment of the Suitability of Phosphite as a Source of Phosphorus. J. Plant Nutr. Soil Sci., 172: 821:828.
28. Roitsch, T. 1999. Source-sink Regulation by Sugar and Stress. Curr. Opinion Plant Biol., 2: 198-206.
29. Ruiz, J. M., Belakbir, A. and Romero L. 1996. Foliar Level of Phosphorus and Its Bioindicators in Cucumis melo Grafted Plants: A Possible Effect of Rootstocks. J. Plant Physiol., 149: 400-404.
30. SAS Institute Inc. 2011. SAS/STAT Users Guide, Version 9.3. SAS Institute Inc., Cary, North Carolina, USA.
31. Schachtman, D. P., Reid, R. J. and Ayling, S. M. 1998. Phosphorus Uptake by Plants: From Soil to Cell. Plant Physiol., 116: 447-453.
32. Southgate, D. A. T. 1976. Determination of Food Carbohydrates. Applied Science Publishers, Ltd., London, UK.
33. Steiner, A. 1984. The Universal Nutrient Solution, In: “ISOSC Proceedings 6th International Congress on Soilless Culture”, The Netherlands, PP. 633-649.
34. Steiner, A. and van Winden, H. 1970. Recipe for Ferric Salts of Ethylenediaminetetraacetic Acid. Plant Physiol., 46: 862-863.
35. Stuttmann, J., Hubberten, H. M., Rietz, S., Kaur, J., Muskett, P., Guerois, R., Bednarek, P., Hoefgen, R. and Parker, J. E. 2011. Perturbation of Arabidopsis Amino Acid Metabolism Causes Incompatibility with the Adapted Biotrophic Pathogen Hyaloperonospora arabidopsidis. Plant Cell, 23: 2788-2803.
36. Thao, H. T. B. and Yamakawa, T. 2008. Growth of Celery (Apium graveolens var. dulce) as Influenced by Phosphite. J. Fac. Agr. Kyushu U., 53: 375-378.
37. Thao, H. T. B., Yamakawa, T., Sarr, P. S. and Myint, A. K. 2008a. Effects of Phosphite, a Reduced Form of Phosphate, on the Growth and Phosphorus Nutrition of Spinach (Spinacia oleracea L.). Soil Sci. Plant Nutr., 54: 761-768.
38. Thao, H. T. B., Yamakawa, T., Shibata, K., Sarr, P. S. and Myint, A. K. 2008b. Growth Response of Komatsuna (Brassica rapa var. Peruviridis) to Root and Foliar Applications of Phosphite. Plant Soil, 308: 1-10.
39. Thao, H. T. B., Yamakawa, T. and Shibata, K. 2009. Effect of Phosphite-phosphate Interaction on Growth and Quality of Hydroponic Lettuce (Lactuca sativa). J. Plant Nutr. Soil Sci., 172: 378-384.
40. Theodorou, M. E. and Plaxton, W. C. 1993. Metabolic Adaptations of Plant Respiration to Nutritional Phosphate Deprivation. Plant Physiol., 101: 339-334.
41. Ticconi, C. A., Delatorre, C. A. and Abel, S. 2001: Attenuation of Phosphate Starvation Responses by Phosphite in Arabidopsis. Plant Physiol., 127: 963-972.
42. van Damme, M., Zeilmaker, T., Elberse, J., Andel, A., de Sain-van, der Velden, M. and van den Ackerveken, G. 2009. Downy Mildew Resistance in Arabidopsis by Mutation of Homoserine Kinase. Plant Cell, 21: 2179-2189.
43. Voll, L. M., Zell, M. B., Engelsdorf, T., Saur, A., Wheeler, M. G., Drincovich, M. F., Weber, A. P. and Maurino, V. G. 2012. Loss of Cytosolic NADP-malic Enzyme 2 in Arabidopsis thaliana Is Associated with Enhanced Susceptibility to Colletotrichum higginsianum. New Phytol., 195: 189-202.