Alpha Amylase Activity and Sprouting During Short Term Storage of Taro Corms

Authors
School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Private Bag X01, Scottsville, Pietermaritzburg, 3209, South Africa.
Abstract
The objective of this study was to investigate taro [Colocasia esculenta (L.) Schott] corm quality as determined by changes in starch morphology and degradation during storage after harvest. Starch is the major nutrient component of taro corms and its quality in corms that are stored as planting material or consumption has not been fully explained. Scanning electron microscopy was used to examine the changes that occur to the surface morphology of starch granules in corms of taro landraces, Dumbe-dumbe, Mgingqeni and Pitshi, stored at cool (12ºC) and ambient (20ºC) temperatures. Alpha-amylase activity and sprouting were used as indicators of changes in the starch granules, and hence corm quality, during storage in polyethylene bags, card boxes, and mesh bags. The degradation of starch granules, alpha amylase activity, and sprouting increased over storage time and varied with landraces, storage material, and temperature. Overall, there was 23% more alpha-amylase activity and 67% more sprouting at 20ºC compared with 12ºC. With respect to storage material, polyethylene bags showed the highest alpha-amylase activity (0.18 EU 0.1 g-1) followed by card boxes (0.15 EU mg-1 0.1 g-1) and mesh bags (0.14 EU mg-1 0.1 g-1). A similar, but more pronounced, trend was observed for sprouting. The findings have implications for selection of storage material for food and propagule storage.

Keywords


1. Aien, A., Pal, M., Khetarpal, S. and Kumar Pandey, S. 2014. Impact of Elevated Atmospheric CO2 on the Growth and Yield in Two Potato Cultivars. J. Agri. Sci. Tech., 16: 1661-1670.
2. Biemelt, S., Hajirezaei, M., Hentschel, E. and Sonnewald, U. 2000. Comparative Analysis of Abscisic Acid content and Starch Degradation during Storage of Tubers Harvested from Different Potato Varieties. Potato Res., 43: 297-393.
3. Cochrane, M. P., Duffers, C. M., Allison, M. J. and Mackay, G. R. 1991. Amylolytic Activity in Stored Potato Tubers. 2. The Effect of Low Temperature Storage on the Activities of α- and β-Amylase and α-Glucosidase in Potato Tubers. Potato Res., 34: 333-341.
4. Cottrell, J. E., Duffus, C. M., Mackay, G. R. and Allison, M. J. 1993. Changes in the Surface Morphology of Starch Granules of the Cultivated Potato, Solanum tuberosum L. during Storage. Potato Res., 36: 119-125.
5. Dronzek, B. C., Huwang, P. and Bushuk, W. 1972. Scanning Electron Microscopy of Starch from Spouted Wheat. Cereal Chem., 49: 232- 239.
6. Fernandez, M. L. and Berry, J. W. 1989. The Effect of Germination on Chickpea Starch.
7. Starch, 41: 17-21.
8. Fincher, G. B. 1989. Molecular and Cellular Biology Associated with Endosperm Mobilization in Germinating Cereal Grains. Ann. Rev. Plant Physiol., 40: 305-346.
9. Frias, J., Fornal, J., Ring, S. G. and Vidal-Valverde, C. 1998. Effect of Germination on Physicochemical Properties of Lentil Starch and Its Components. Lebensmittel-Wissenschaft und-Technol., 30: 178-183.
10. Gallant, D., Mercier, C. and Guilbot, A. 1972. Electron Microscopy of Starch Granules Modified by Bacterial Alpha-amylase. Cereal Chem., 49: 354 - 365.
11. Gallant, P.D., Derrien, A., Aumaitre, A. and Massy A. 1973. Dégradation In vitro de l’Amidon par le Suc Pancréatique. Starch, 25: 6-64.
12. Hoover, R. and Sosulki, F. W. 1991. Effect of Cross-linking on Functional Properties of Legume Starches. Starch, 38: 149-155.
13. Klein, T., Buhr, E. and Frase, C. G. 2012. TSEM: A Review of Scanning Electron Microscopy in Transmission Mode and Its Applications. Adv. Imag. Electr. Phy., 171: 297-356.
14. Lorenz, K., Collins, F. and Kulp, K. 1981. Sprouting of Cereal Grains: Effects on Starch Characteristics. Starch, 33: 183-187.
15. Mabhaudhi, T. and Modi, A. T. 2013. Preliminary Assessment of Genetic Diversity in Three Taro (Colocasia esculenta L. Schott) Landraces Using Agro-morphological and SSR DNA Characterisation. J. Agric. Sci. Tech., 3: 265-271
16. MacGregor, A. W. and Balance, D. L. 1980. Hydrolysis of Large and Small Starch Granules from Normal and Waxy Barley Cultivars by Alpha-amylases from Barley Malt. Cereal Chem., 57: 397-402.
17. Majzoobi, M., Habibi M., Hedayati, S., Ghiasi, F. and Farahnaky, A. 2015. Effects of Commercial Oat Fiber on Characteristics of Batter and Sponge Cake. J. Agri. Sci. Tech., 17: 99-107.
18. Maki, K. C. Pelkman, C. L. Finocchiaro, E. T. Kelley, K. M., Lawless, A. L. Schild, A. L. and Rains, T. M. 2012. Resistant Starch from High-amylose Maize Increases Insulin Sensitivity in Overweight and Obese Men. J. Nutr., 142: 717–23.
19. Mare, R. M. and Modi, A. T. 2012. Taro Corm Quality in Response to Planting Date and Post-harvest Storage. I. Starch Content and Reducing Sugars. Afr. J. Agric. Res., 7: 3014-3021.
20. Modi, A. T. 2004. Short-term Preservation of Maize Landrace Seed and Taro Propagules Using Indigenous Storage Methods. S. A. J. Bot., 70: 16-23.
21. Modi, A. T. and Cairns, A. L. P. 1994. Molybdenum Deficiency in Wheat Results in Lower Dormancy Levels via Reduced ABA. Seed Sci. Res., 4: 329-333.
22. Modi, A. T. and White, B. J. 2004. Water Potential of Cherry Tomato (Lycopersicon esculentum Mill.) Placenta and Seed Germination in Response to Desiccation during Fruit Development. Seed Sci. Res., 14: 249-257.
23. Nielsen, T. H., Deiting, U. and Stitt, M. 1997. A β-Amylase in Potato Tubers Is Induced by Storage at Low Temperature. Plant Physiol., 113: 503-510.
24. Panneerselvam R., Abdul-Jaleel, C., Somasundaram, R., Sridharan, R. and Gomathinayagam, M. 2007. Carbohydrate metabolism in Dioscorea esculenta (Lour.) Burk. Tubers and Curcuma longa L. Rhizomes during Two Phases of Dormancy. Coll. Surf. B: Bioint. 59: 59 - 66.
25. Ramanatha, R. V., Matthews, P. J., Eyzaguirre, P. B. and Hunter, D. 2010. The Global Diversity of Taro: Ethnobotany and Conservation. Biodiversity International, Rome.
26. Revedin, A., Aranguren, B. Becattini, R. Longo, L., Marconi, E., Lippi, M. M., Skakun, N. and Sinitsyn, A. 2010. Thirty Thousand-year-old Evidence of Plant Food Processing. Proc. Nat. Acad. Sci., 107: 18815-18819.
27. Robertson, G. L. 2012. Food Packaging: Principles and Practice. 3rd Edition, 1439862419, CRC Press, Brisbane, pp. 8.
28. Silva, H. C. and Luh, B. S. 1978. Scanning Electron Microscopy Studies on Starch Granules of Red Kidney Beans and Bean Sprouts. J. Food Sci., 43: 1405-1408.
29. Smith, B. 2006. The Farming Handbook. ISBN 10:1-86914-090-7, University of KwaZulu-Natal Press, Pietermaritzburg, pp. 3.
30. Soil Classification Working Group. 1991. Soil Classification: A Taxonomic System for South Africa. Department of Agricultural Development, Pretoria, South Africa.
31. Sreenath, H. K. 1992. Studies on Starch Granules Digestion by Alpha-amylase. Starch, 44: 61-83.
32. Sun, Z. and Henson, C. A. 1990. Degradation of Native Starch Granules by Barley Alpha-glucosidases. Plant Physiol., 94: 320-327.
33. Valetudie, J. C., Colonna, P., Bouchet, B. and Gallant, D. J. 1993. Hydrolysis of Tropical Tuber Starches by Bacteria and Pancreatic α-Amylases. Starch, 45: 270-276.
34. Wetzstein, H. Y. and Wetzstein, M. E. 1981. Scanning Electron Microscopy and Size Analysis of Temperature Induced In vivo Potato Starch Breakdown. J. Am. Soc. Hort. Sci., 106: 688-690.
35. Yam, K. L. 2009. Encyclopedia of Packaging Technology. ISBN 978-0-470-08704-6, John Wiley and Sons, New Jersey, pp. 33
36. Yoxall, A., Janson, R., Bradbury, S. R., Langley, J., Wearn, J. and Hayes, S. 2006. Openability: Producing Design Limits for Consumer Packaging. Pack. Technol. Sci., 16: 183-243
37. Zhang, T. and Oates, C. G. 1999. Relationship between α-Amylase Degradation and Physico-chemical Properties of Sweet Potato Starches. Food Chem., 65: 157-163.