Morphological, Physiological and Biochemical Responses of Crops (Zea mays L., Phaseolus vulgaris L.), Medicinal Plants (Hyssopus officinalis L., Nigella sativa L.), and Weeds (Amaranthus retroflexus L., Taraxacum officinale F. H. Wigg) Exposed to SiO2 Nanoparticles

Authors
1 Zabol Medicinal Plants Research Center, Zabol University of Medical Science, P. O. Box: 61615-585, Zabol, Islamic Republic of Iran.
2 Department of Range and Watershed Management, Faculty of Natural Resources, University of Zabol, Islamic Republic of Iran.
3 P. O. Box 7, Miki-cho post office Retired, Ikenobe 3011-2, Kagawa-ken, 761-0799, Japan
Abstract
In this research, two field crops(Zea mays L. and Phaseolus vulgaris L.), two medicinal plants(Hyssopus officinalis L. and Nigella sativa L.)and two weeds(Amaranthus retroflexus L. and Taraxacum officinale F. H. Wigg) were separately treated with three concentrations of SiO2 nanoparticles (400, 2,000, and 4,000 mg L-1). The effects of these treatments on morphological and biochemical characteristics of the plants were assessed, including germination, root and shoot length, root and shoot fresh weight, root and shoot dry weight, photosynthetic pigments, total carbohydrates, total protein, total amino acid, and proline content. In the crops and medicinal plants, 400 mg L-1 SiO2 NPs significantly increased seed germination, root and shoot lengths, fresh weights (except for H. officinalis) and dry weights, photosynthetic pigments, total protein, and total amino acid (except for H. officinalis). In weeds, as SiO2 NP concentration increased from 400 to 4,000 mg L-1, germination, root and shoot lengths, fresh and dry weights, and photosynthetic pigments as well as total protein decreased. Total carbohydrates in all plants decreased significantly, except for A. retroflexus at 400 mg L-1 SiO2 NPs. In all plant species, with increasing SiO2 NP concentration, proline content increased significantly. According to these results, a lower concentration of SiO2 NPs can have beneficial effects on morphological, physiological, and biochemical characteristics of plants.

Keywords


1. Ali, B. H. and Blunden, G. 2003. Pharmacological and Toxicological Properties of Nigella sativa. J. Phytotherapy. Res., 17: 299-305.
2. Ball, P. 2002. Natural Strategies for the Molecular Engineer. Nanotechnol., 13: 15-28.
3. Bates, L. S., Waldren, R. P. and Teare, I. D. 1973. Rapid Determination of Free Proline for Water Stress Studies. Plant Soil, 39: 205-208.
4. Batty, L. and Younger, P. 2003. Effects of External Iron Concentration upon Seedling Growth and Uptake of Fe and Phosphate by the Common Reed, Phragmites australis (Cav.) Trin ex. Steudel. Ann. Bot., 92: 801-806.
5. Bradford, M. M. 1976. A Dye Binding Assay for Protein. Anal. Biochem., 72: 248-254.
6. Cao, C., Appelbaum, R. P. and Parker, R. 2013. Research is High and the Market is Far Away: Commercialization of Nanotechnology in China. Technol. Soc., 35: 55-64.
7. Chaitanya, M. V. N. L., Dhanabal, S. P. and Rajan, S. R. 2013. Pharmacodynamic and Ethnomedicinal Uses of Weed Species in Nilgiris, Tamilnadu State, India: A Review. African J. Agric. Res., 8: 3505-3527.
8. Chen, J., Caldwell, R. D., Robinson, C. A. and Steinkamp, R. 2000. Let’s Put the Si Back into the Soil. Part I. Plant Nutr., 4: 44-46.
9. Chinnamuthu, C. R. and Boopathi, P. M. 2009. Nanotechnology and Agroecosystem. Madras Agric. J., 96: 17-31.
10. Chithrani, B. D., Ghazani, A. A. and Chan, W. C. W. 2006. Determining the Size and Shape Dependence of Gold Nanoparticle Uptake into Mammalian Cells. Nano Lett., 6: 662-668.
11. Costea, M., Weaver, S. E. and Tardif, F. J. 2004. The Biology of Canadian Weeds, Amaranthus retroflexus L., A. powellii S. Watson and A. hybridus L. Can. J. Plant Sci., 84: 631-668.
12. E-Temsah, Y. S. and Joner, E. J. 2012. Impact of Fe and Ag Nanoparticles on Seed Germination and Differences in Bioavailability during Exposure in Aqueous Suspension and Soil. Environ. Toxicol., 27: 42-49.
13. Exley, C. 1998. Silicon in Life: A Bioinorganic Solution to Bioorganic Essentiality. J. Inorg. Biochem. 69: 139-144.
14. Fauteux, F., Remus-Borel, W., Menzies, J. G. and Belanger, R. R. 2005. Silicon and Plant Disease Resistance against Pathogenic Fungi. FEMS Microbiol. Lett., 249: 1-6.
15. Gong, H. J., Zhu X. Y., Chen, K. M., Wang, S. M. and Zhang, C. L. 2005. Silicon Alleviates Oxidative Damage of Wheat Plants in Pots under Drought. Plant Sci., 169: 313-321.
16. Gong, H. J., Chen, K. M., Zhao, Z. G., Chen, G. C. and Zhou, W. C. 2008. Effects of Silicon on Defense of Wheat against Oxidative Stress under Drought at Different Developmental Stages. Biol. Plant., 52: 592-596.
17. Gruère, G. P., 2012. Implications of Nanotechnology Growth in Food and Agriculture in OECD Countries. Food Policy, 37: 191-198.
18. Hull, R. J. 2004. Scientists Start to Recognize Silicon's Beneficial Effects. Turfgrass Trend., 3: 154-158.
19. Jiang, H. S., Li, M., Chang, F. Y, Li, W. and Yin, L. Y. 2012. Physiological Analysis of Silver Nanoparticles and AgNO3 Toxicity to Spirodela polyrhiza. Environ. Toxicol. Chem., 31: 1880-1886.
20. Khazaie, H. R., Nadjafi, F. and Bannayan, M. 2008. Effect of Irrigation Frequency and Planting Density on Herbage Biomass and Oil Production of Thyme (Thymus vulgaris) and Hyssop (Hyssopus officinalis). Ind. Crop Prod., 27: 315-321.
21. Liang, Y., Sun, W., Zhu, Y. and Christie, P. 2007. Mechanisms of Silicon-mediated Alleviation of Abiotic Stresses in Higher Plants: A Review. Environ. Pollut., 147: 422-428.
22. Lichtenthaler, H. K. 1987. Chlorophylls and Carotenoids: Pigments of Photosynthetic Biomembranes. Meth. Enzymol., 148: 350-382.
23. Limbach, L. K., Li, Y., Grass, R. N., Brunner, T. J., Hintermann, M. A., Muller, M., Gunther, D. and Stark, W. J. 2005. Oxide Nanoparticle Uptake in Human Lung Fibroblasts: Effects of Particle Size, Agglomeration, and Diffusion at Low Concentrations. Environ. Sci. Technol., 39: 9370-9376.
24. Lin, D. and Xing, B. 2007. Phytotoxicity of Nanoparticles: Inhibition of Seed Germination and Root Growth. Environ Pollut., 150: 243-250.
25. Maghabl, R., Chizari, M., Khayyam-Nekouie S. M. and Tabatabaie M. 2012. Investigating the Researchers’ Attitude and the Obstacle Hampering Nanotechnology Development in the Agricultural Sector of Iran. J. Agr. Sci. Tech. 14: 493-503.
26. Mahmoodzadeh, H., Aghili, R. and Nabavi, M. 2013. Physiological Effects of TiO2 Nanoparticles on Wheat (Triticum aestivum). Tech. J. Eng. Appl. Sci., 3: 1365-1370.
27. Mansour, M. M. F. 2000. Nitrogen Containing Compounds and Adaptation of Plants to Salinity Stress. Biol. Plant., 43: 491-500.
28. Matichenkov, V. V. and Calvert, D. V. 2002. Silicon as a Beneficial Element for Sugarcane. J. Am. Soc. Sugar Cane Technol., 22: 21-30.
29. McLaren, J. S. 2005. Crop Biotechnology Provides an Opportunity to Develop a Sustainable Future. Trend. Biotechnol., 23: 339-342.
30. Mousavi, S. R. and Rezaei, M. 2011. Nanotechnology in Agriculture and Food Production. J. Appl. Environ. Biol. Sci., 1: 414-419.
31. Qu, X. L., Alvarez, P. J. J., Li and Q. L. 2013. Applications of Nanotechnology in Water and Wastewater Treatment. Water Res., 47: 3931-3946.
32. Rad, J. S., Alfatemi, M. H., Rad M. S., Rad, M. S., Sen, D. J. and Mohsenzadeh S. 2013b. In-vivo Titanium Dioxide (TiO2) Nanoparticles Effects on Chromosomal Abnormalities and Lactate Dehydrogenase Activity. Am. J. Advan. Drug. Deliv., 1: 232-237.
33. Rad, M. S., Rad, J. S., Heshmati, G. A., Miri, A. and Sen, D. J. 2013a. Biological Synthesis of Gold and Silver Nanoparticles by Nitraria schoberi Fruits. Am. J. Adv. Drug. Deliv., 1: 174-9.
34. Rao, P. and Pattabiraman, T. N. 1989. Reevaluation of the Phenol-sulfuric Acid Reaction for the Estimation of Hexoses and Pentoses. Anal. Biochem., 181: 18-22.
35. Sadeghi, A. and Cheghamirza, K. 2012. Efficiency of RAPD and ISSR Marker Systems for Studying Genetic Diversity in Common Bean (Phaseolus vulgaris L.) Cultivars. Ann. Biol. Res., 3: 3267-3273.
36. Sahoo, S. K., Parveen, S., Panda and J. J. 2007. The Present and Future of Nanotechnology in Human Health Care. Nanomed. Nanotech. Biol. Med., 3: 20-3.
37. Salama, H. M. H. 2012. Effects of Silver Nanoparticles in Some Crop Plants, Common Bean (Phaseolus vulgaris L.) and Corn (Zea mays L.). Int. Res. J. Biotechnol., 3: 190-197.
38. Savant, N. K., Synder, G. H. and Datnoff, L. E. 1997. Silicon Management and Sustainable Rice Production. Adv. Agron., 58: 151-199.
39. Savvas, D., Giotis, D., Chatzieustratiou, E., Bakea, M. and Patakioutas, G. 2009. Silicon Supply in Soilless Cultivations of Zucchini Alleviates Stress Induced by Salinity and Powdery Mildew Infections. Environ. Exp. Bot., 65: 11-17.
40. Sharifi-Rad, J., Hoseini Alfatemi, S. M., Sharifi-Rad M. and Iriti, M. 2014. Antimicrobial Synergic Effect of Allicin and Silver Nanoparticles on Skin Infection Caused by Methicillin-resistant Staphylococcus aureus spp. Ann. Med. Health Sci. Res., 4: 863-8.
41. Sharifi Rad, J., Sharifi Rad, M. and Teixeira da Silva, J. A. 2014. Effects of Exogenous Silicon on Cadmium Accumulation and Biological Responses of Nigella sativa L. (Black Cumin). Commun. Soil Sci. Plant Anal., 45: 1918-1933.
42. Siddiqui, M. H. and Al-Whaibi, M. H. 2014. Role of Nano-SiO2 in Germination of Tomato (Lycopersicum esculentum Mill.) Seeds. Saudi J. Biol. Sci., 21: 13-17.
43. Slomberg, D. L. and Schoenfisch, M. H. 2012. Silica Nanoparticle Phytotoxicity to Arabidopsis thaliana. Environ. Sci. Technol., 18: 10247-54.
44. Sun, S. W., Lin, Y. C., Weng, Y. M. and Chen, M. J. 2006. Efficiency Improvements on Ninhydrin Method for Amino Acid Quantification. J. Food Comp. Anal., 19: 112-117.
45. Wang, I. C., Tai, L. A., Lee, D. D., Kanakamma, P. P., Shen, C. K. F., Luh, T. Y., Cheng, C. H. and Hwang, K. C. 1999. C-60 and Water-soluble Fullerene Derivatives as Antioxidants against Radical-initiated Lipid Peroxidation. J. Med. Chem., 42: 4614-4620.
46. Wei, C., Zhang, Y., Guo, J., Han, B., Yang, X. and Yuan, J. 2010. Effects of Silica Nanoparticles on Growth and Photosynthetic Pigment Contents of Scenedesmus obliquus. J. Environ. Sci. (China), 22: 155-160.
47. Yang, L. and Watts, D. J. 2005. Particle Surface Characteristics May Play an Important role in Phytotoxicity of Alumina Nanoparticles. Toxicol. Lett., 158: 122-132.
48. Zamani, H. and Moradshahi, A. 2013. Synthesis and Coating of Nano Silver by Vanillic Acid and Its Effects on Dunaliella salina Teod. Mol. Biol. Res. Commun., 2: 47-55.
49. Zheng, L., Hong, F. S., Lu, S. P. and Liu, C. 2005. Effect of Nano-TiO2 on Strength of Naturally and Growth Aged Seeds of Spinach. Biol. Trace Elem. Res., 104: 83-91.