Effect of Foliar Spray of Zinc Oxide on Some Antioxidant Enzymes Activity of Sunflower under Salt Stress

Authors
1 Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, Isfahan, Islamic Republic of Iran.
2 Department of Soil Science, College of Agriculture, Isfahan University of Technology, Isfahan, Islamic Republic of Iran.
Abstract
This study investigated the effects of foliar application of normal and nanoparticles of zinc oxide (ZnO) on the growth, proline content, and some antioxidant enzyme activities of sunflower cultivars at different salinity levels. Treatments included five cultivars (Helianthus annuus L. cvs. Alstar, Olsion, Yourflor, Hysun36, and Hysun33), two salinity levels (0 and 100 mM NaCl), and three foliar applications (none-sprayed, ZnO normal and nanoparticles at a rate of 2 g/L). Olsion showed the highest proline content and superoxide dismutase activity (SOD) among the studied cultivars under saline condition. Foliar spray of ZnO improved SOD activity and shoot dry weight of sunflower. Nanoparticles of ZnO had positive effect on biomass production of sunflower plants compared to the normal form. According to the result, Olsion and Hysun33 cultivars were suitable for saline conditions, whereas Hysun36 was appropriate for normal condition.

Keywords


1. Aebi, H. 1984. Catalase in Vitro. Method Enzymol., 105: 121-126.
2. Ali, G., Srivastava, P. S. and Iqbal, M. 2000. Influence of Cadmium and Zinc on Growth and Photosynthesis of Bacopa monniera L. Cultivated in Vitro. Biol Plant., 43: 599-601.
3. Bates, L. S., Waldren, R. P. and Teare, I. D. 1973. Rapid Determination of Free Proline for Water Stress Studies. Plant Soil., 39: 205-207.
4. Bradford, M. M. 1976. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal Biochem., 72: 248-254.
5. Brunner, T. J., Wick, P., Manser, P., Spohn, P., Grass, R. N., Limbach, L. K., Bruinink, A. and Stark, W. J. 2006. In Vitro Cytotoxicity of Oxide Nanoparticles: Comparison to Asbestos, Silica, and the Effect of Particle Solubility. Environ Sci Technol., 40: 4374-4381.
6. Cakmak, I. and Marschner, H. 1988. Zinc-Dependent Changes in ESR Signals, NADPH Oxidase and Plasma Membrane Permeability in Cotton Roots. Physiol Plant., 73: 132-186.
7. Chapman, H. D. and Pratt, P. F. 1961. Methods of Analysis for Soil, Plant and Water. Riverside, CA: University of California, Division of Agricultural Science.
8. Clarke, N. D. and Berg, J. M. 1998. Review: Zinc Fingers in Caenorhabditis Elegans: Finding Families and Probing Pathways. Sci., 282: 2018-2022.
9. Davenport, S. B., Gallego, S. M., Benavides, M. P. and Tomaro, M. L. 2003. Behavior of Antioxidant Defense System in the Adaptive Response to Salt Stress in Helianthus annuus L. cells. Plant Growth Regul., 40: 81-88.
10. Di Baccio, D., Navari-Izzo, F. and Izzo, R. 2004. Seawater Irrigation: Antioxidant Defense Responses in Leaves and Roots of a Sunflower (Helianthus annuus L.) Ecotype. J Plant Physiol., 161: 1359-1366.
11. Dubey, R. S. 2005. Photosynthesis in Plants under Stressful Conditions in Photosynthesis handbooks. 2nd Ed. M. Pessarakli C. R. C. Press, New York. p. 717-718.
12. Giannopolitis, C. N. and Ries, S. K. 1977. Superoxide Dismutases. I. Occurrence in Higher Plants. Plant Physiol., 59: 309-314.
13. Hasegawa, P. M., Bressan, R. A., Zhu, J. K. and Bohnert, H. J. 2000. Plant Cellular and Molecular Responses to High Salinity. Annu Rev Plant Physiol Plant Mol Biol., 51: 463-499.
14. Hoque, M. D. A., Okuma, E., Banu, M. N. A., Nakamura, Y., Shimoishi, Y. and Murata, Y. 2007. Exogenous Proline Mitigates the Determintal Effects of Salt Stress More Than Exogenous Betaine by Increasing Antioxidant Enzyme Activities. J. Plant Physiol., 164: 553-561.
15. Jiang, W., Sun, X. H., Xu, H. L., Mantri, N. and Lu, H. F. 2014. Optimal Concentration of Zinc Sulfate in Foliar Spray to Alleviate Salinity Stress in Glycine soja. J. Agr. Sci. Tech., 16: 445-460.
16. Kaya, C. and Higgs, D. 2002. Response of Tomato (Lycopersicon esculentum L.) Cultivars to Foliar Application of Zinc in Sand Culture at Low Zinc. Sci Hort., 93: 53-64.
17. Lin, D. and Xing, B. 2008. Root Uptake and Phytotoxicity of ZnO Nanoparticles. Environ Sci Technol., 42: 5580-5585.
18. Madhav Rao, K. V. and Srestry, T. V. 2000. Antioxidative Parameters in the Seedlings of Pigeon Pea (Cajanas cajan L. Millspough) in Response to Zn and Ni Stresses. Plant Sci., 157: 113-128.
19. Mittler, R. 2002. Oxidative Stress, Antioxidants and Stress Tolerance. Trends Plant Sci., 7: 405-410.
20. Monica, R. C. and Cremonini, R. 2009. Nanoparticles and Higher Plants. Caryologia., 62: 161-165.
21. Nakano, Y. and Asada, K. 1981. Hydrogen Peroxide is Scavenged by Ascorbate-specific Peroxidase in Spinach Chloroplasts. Plant Cell Physiol., 22: 867-880.
22. Neill, S., Desikan, R. and Hancock, J. 2002. Hydrogen Peroxide Signaling. Curr Opin Plant Biol., 5: 388-395.
23. Nikolopoulos, D. and Manetase, Y. 1991. Compatible Solutes and in vitro Stability of Salsola soda Enzymes: Proline Incopatiility. Phytochem., 30: 411-413.
24. Noctor, G. and Foyer. C. H. 1998. Ascorbate and Glutathione: Keeping Active Oxygen under Control. Annu Rev Plant Physiol Plant Mol Biol., 49: 249-279.
25. Owens, S. 2001. Salt of the Earth. Genetic Engineering May Help to Reclaim Agriculture Land use to Stalinization. EMBO Reports., 2: 877-879.
26. Pandey, A. C., Sanjay, S. S. and Yadav, R. S. 2010. Application of ZnO Nanoparticles in Influencing the Growth Rate of Cicer arietinum. J Exp Nanosci., 5: 488-497.
27. Prasad, T. N. V. K. V., Sudhakar, P., Sreenivasulu, Y., Latha, P., Munaswamy, V., Raja Reddy, K., Sreeprasad, T. S., Sajanlal, P. R. and Pradeep, T. 2012. Effect of Nanoscales Zinc Oxide on the Germination, Growth and Yield of Peanut. J Plant Nutr., 35: 905-927.
28. Rady, M. M., Sadak, M. S., El-Bassiouny, H. M. S. and Abd El-Monem, A. A. 2011. Alleviation of the Adverse Effects of Salinity Stress in Sunflower Cultivars Using Nicotinamide and α-Tocopherol. Aust J Basic Appl Sci., 5: 342-355.
29. Rios-Gonzalez, K., Erdei, L. and Lips, S. H. 2002. The Activity of Antioxidant Enzymes in Maize and Sunflower Seedlings as Affected by Salinity and Different Nitrogen Sources. Plant Sci., 162: 923-930.
30. Saleh, J. and Maftoun, M. 2008. Interactive Effects of NaCl Levels and Zinc Sources and Levels on the Growth and Mineral Composition of Rice. J. Agric. Sci. Technol., 10: 325-336.
31. Sanaeiostovar, A., Khoshgoftarmanesh, A. H., Shariatmadari, H., Afyuni, M. and Schulin, R. 2012. Combined Effect of Zinc and Cadmium Levels on Root Antioxidative Responses in Three Different Zinc-efficient Wheat Genotypes. J. Agron Crop Sci., 198: 276-285.
32. Shahbaz, M., Ashraf, M., Akram, N., Hanif, A., Hameed, S., Joham, S. and Rehman, R. 2011. Salt-induced Modulation in Growth, Photosynthetic Capacity, Proline Content and Ion Accumulation in Sunflower (Helianthus annuus L.). Acta Physiol Plant., 33: 1113-1122.
33. Shilpim, M. and Narendra, T. 2005. Cold, Salinity and Drought Stresses: an Overview. Arch Biochem Biophys., 444: 139-158.
34. Sudhakar, C., Lakshmi, A. and Giridarakumar, S. 2001. Changes in the Antioxidant enzyme Efficacy in Two High Yielding Genotypes of Mulberry (Morus alba L.) under NaCl Salinity. Plant Sci., 161: 613-619.
35. Wang, C., Zhang, S. H., Wang, P. F., Hou, J., Zhang, W. J., Li, W. and Lin, Z. P. 2009. The Effect of Excess Zn on Mineral Nutrition and Antioxidative Response in Rapeseed Seedlings. Chemosphere., 75: 1468-1476.
36. Xiong, L. and Zhu, J. K. 2002. Molecular and Genetic Aspects of Plant Response to Osmotic Stress. Plant Cell Environ., 25: 131-139.
37. Yang, F., Hong, F. S., You, W. J., Liu, C., Gao, F. Q., Wu, C. and Yang, P. 2006. Influences of Nano-anatase TiO2 on the Nitrogen Metabolism of Growing Spinach. Biol Trace Elem Res., 110: 179-190.
38. Yu, Q., Osborne, L. and Rengel, Z. 1998. Micronutrient Deficiency Changes Activities of Superoxide Dismutase and Ascorbate Peroxidase in Tobacco Plants. J Plant Nutr., 21: 1427-1437.
39. Zhu, H., Han, J., Xiao, J. Q. and Jin, Y. 2008. Uptake, Translocation and Accumulation of Manufactured Iron Oxide Nanoparticles by Pumpkin Plants. J. Environ Monitor., 10: 713-717.