1. Augspurger, N. R., Webel, D. M. and Baker, D. H. 2007. An Escherichia Coli Phytase Expressed in Yeast Effectively Replaces Inorganic Phosphorus for Finishing Pigs and Laying Hens. J. Anim. Sci., 85: 1192-1198.
2. Bae, H. D., Yanke, L. J., Cheng, K. -J. and Selinger, L. B. 1999. A Novel Staining Method for Detecting Phytase Activity. J Microbiol. Meth., 39: 17-22.
3. Bates, E. E., Gilbert, H. J., Hazlewood, G. P., Huckle, J., Laurie, J. I. and Mann, S. P. 1989. Expression of a Clostridium Thermocellum Endoglucanase Gene in Lactobacillus plantarum. Appl. Environ. Microbiol., 55: 2095-2097.
4. Chachaty, E. and Saulnier, P. 2000. Isolating Chromosomal DNA from Bacteria. In: "The Nucleic Acid Protocols Handbook", (Ed.): Rapley, R.. Humana Press, Totowa, New Jersey.
5. Cordes, C., Meima, R., Twiest, B., Kazemier, B., Venema, G., van Dijl, J. and Bron, S. 1996. The Expression of a Plasmid-specified Exported Protein Causes Structural Plasmid Instability in Bacillus subtilis. J. Bacteriol., 178: 5235-5242.
6. Dassa, J., Marck, C. and Boquet, P. 1990. The Complete Nucleotide Sequence of the Escherichia coli Gene appA Reveals Significant Homology between pH 2.5 Acid Phosphatase and Glucose-1-phosphatase. J. Bacteriol., 172: 5497-5500.
7. Ehrmann, M.A., Kurzak,P., Bauer, J. and Vogel, R. F. 2002. Characterization of Lactobacilli towards Their Use as Probiotic Adjuncts in Poultry. J. Appl. Microbiol., 92: 966-75.
8. Gruss, A. and Ehrlich, S. D. 1988. Insertion of Foreign DNA into Plasmids from Gram-positive Bacteria Induces Formation of High-molecular-weight Plasmid Multimers. J. Bacteriol., 170: 1183-1190.
9. Gruss, A. and Ehrlich, S. D. 1989. The Family of Highly Interrelated Single-stranded Deoxyribonucleic Acid Plasmids. Microbiol. Rev.,53: 231- 241.
10. Han, Y., Wilson, D. B. and Lei, X. G. 1999. Expression of an Aspergillus niger Phytase Gene (phyA) in Saccharomyces cerevisiae. Appl. Environ. Microbiol., 65: 1915-1918.
11. Han, Y. M., Yang, F., Zhou, A. G. and Miller, E. R. 1997. Supplemental Phytases of Microbial and Cereal Sources Improve Dietary Phytate Phosphrous Utilization by Pigs from Weaning through Finishing. J. Anim. Sci., 75: 1071-1025.
12. Igbasan, F.A., Manner, K., Miksch, G., Borriss, R., Farouk, A., Simon, O. 2000. Comparative Studies on the In vitro Properties of Phytases from Various Microbial Origins. Arch. Anim. Nutr., 53: 353-373.
13. Kerovuo, J. and Tynkkynen, S. 2000. Expression of Bacillus subtilis Phytase in Lactobacillus plantarum 755. Lett. Appl. Microbiol., 30: 325-329.
14. Kiewiet, R., Kok, J., Seegers, J. F., Venema, G. and Bron, S. 1993. The Mode of Replication Is a Major Factor in Segregational Plasmid Instability in Lactococcus lactis. Appl. Environ. Microbiol., 59: 358-64.
15. Kimoto, H., Kurisaki, J., Tsuji, N. M., Ohmomo, S. and Okamoto, T. 1999. Lactococci as Probiotic Strains: Adhesion to Human Enterocyte-like Caco-2 Cells and Tolerance to Low pH and Bile. Lett. Appl. Microbiol., 29: 313-6.
16. Laemmli, U. K. 1970. Cleavage of Structural Proteins during the Assembly of the Head Bacteriophage T4. Nature, 227: 2079-2085.
17. Lee, S., Kim, T., Stahl, C. H. and Lei, X. G. 2005. Expression of Escherichia coli AppA2 Phytase in Four Yeast Systems. Biotechnol. Lett., 27: 327-334.
18. Lei, X. G. and Stahl, C. H. 2001. Biotechnological Development of Effective Phytases for Mineral Nutrition and Environmental Protection. Appl. Microbiol. Biotechnol., 57: 474-481.
19. Leonhardt H., Alonso J. C. 1991. Parameters Affecting Plasmid Stability in Bacillus subtilis. Gene., 103: 107-111.
20. Liu, J.-R., Yu, B., Liu, F. -H., Cheng, K. -J. and Zhao, X. 2005. Expression of Rumen Microbial Fibrolytic Enzyme Genes in Probiotic Lactobacillus reuteri. Appl. Environ. Microbiol., 71: 6769-6775.
21. Liu, J. -R., Yu, B., Zhao, X. and Cheng, K. -J. 2007. Coexpression of Rumen Microbial β-Glucanase and Xylanase Genes in Lactobacillus reuteri. Appl. Microbiol. Biotechnol., 77: 117-124.
22. Majidzadeh Heravi, R., Kermanshahi, H., Sankian, M., Nassiri, M. R., Moussavi, A. H., Nasiraii, L. R. and Varasteh, A. R. 2011. Screening of Lactobacilli Bacteria Isolated from Gastrointestinal Tract of Broiler Chickens for Their Use as Probiotic. African J. Microbiol. Res., 5: 1858-1868.
23. Mason, C. K., Collins, M. A. and Thompson, K. 2005. Modified Electroporation Protocol for Lactobacilli Isolated from the Chicken Crop Facilitates Transformation and the Use of a Genetic Tool. J. Microbiol. Method., 60: 353-63.
24. Mierau, I. and Kleerebezem, M. 2005. Ten Years of the Nisin-Controlled Gene Expression System (NICE) in Lactococcus lactis. Appl. Microbiol. Biotechnol., 68: 705-717.
25. Mills, S., Mcauliffe, O. E., Coffey, A., Fitzgerald, G. F. and Ross, R. P. 2006. Plasmids of Lactococci: Genetic Accessories or Genetic Necessities? FEMS Microbiol. Rev., 30: 243-273.
26. Perez-Arellano, I., Zuniga, M. and Perez-Martinez, G. 2001. Construction of Compatible Wide-host-range Shuttle Vectors for Lactic Acid Bacteria and Escherichia coli. Plasmid, 46: 106-116.
27. Pillai, P. B., O’connor-Dennie, T., Owens, C. M. and Emmert, J. L. 2006. Efficacy of an Escherichia coli Phytase in Broilers Fed Adequate or Reduced Phosphorus Diets and Its Effect on Carcass Characteristics. Poult. Sci., 85: 1737–1745.
28. Rodriguez, E., Han, Y. and Lei, X. G. 1999. Cloning, Sequencing, and Expression of an Escherichia coli Acid Phosphatase/Phytase Gene (appA2) Isolated from Pig Colon. Biochem. Biophys. Res. Commun., 257: 117-123.
29. Sambrook, J. and Russell, D. W. 2001. Molecular Cloning :A Laboratory Manual. Cold Spring Harbor Laboratory Press, New York.
30. Stahl, C. H., Roneker, K. R., Pond, W. G. and Lei, X. G. 2004. Effects of Combining three Fungal Phytases with a Bacterial Phytase on Plasma Phosphorus Status of Weanling Pigs Fed a Corn-soy Diet. Poult. Sci., 82: 1725–1731.
31. Steidler, L. and Neirynck, S. 2005. Genetically Modified Probiotics. In: "Probiotics and Prebiotics: Scientific Aspects", (Ed.): Tannock, G. W.. Horizon Scientific Press. Cister Academic press, London.
32. Van Rooijen, J. R., Gasson, M. J. and Vos, W. M. D. 1992. Characterization of the Lactococcus lactis Lactose Operon Promoter: Contribution of Flanking Sequences and LacR Repressor to Promoter Activity. J. Bacteriol., 174: 2273-2280.
33. Veum, T. L., Bollinger, D. W., Buff, C. E. and Bedford, M. R. 2006. A Genetically Engineered Escherichia coli Phytase Improves Nutrient Utilization, Growth Performance, and Bone Strength of Young Swine Fed Diets Deficient in Available Phosphorus. J. Anim. Sci., 84: 1147-1158.
34. Vinderola, C. G. and Reinheimer, J. A. 2003. Lactic Acid Starter and Probiotic Bacteria: A Comparative ‘‘In vitro’’ Study of Probiotic Characteristics and Biological Barrier Resistance. Food Res. Inter., 36: 895-904.
35. Xin, K.-Q., Hoshino, Y., Toda, Y., Igimi, S., Kojima, Y., Jounai, N., Ohba, K., Kushiro, A., Kiwaki, M., Hamajima, K., Klinman, D. and Okuda, K. 2003. Immunogenicity and Protective Efficacy of Orally Administered Recombinant Lactococcus lactis Expressing Surface-bound HIV Env. Blood, 102: 223-228.
36. Xiong, A. S., Yao, Q. H., Peng, R. H., Han, P. L., Cheng, Z. M. and Li, Y. 2005. High Level Expression of a Recombinant Acid Phytase Gene in Pichia pastoris. J. Appl. Microbiol., 98: 418-428.
37. Yin, Q. Q., Zheng, Q. H. and Kang, X. T. 2007. Biochemical Characteristics of Phytases from Fungi and the Transformed Microorganism. Anim. Feed Dci. Tech, 132: 341-350.
38. Zuo, R., Chang, J., Yin, Q., Chen, L., Chen, Q., Yang, X., Zheng, Q., Ren, G. and Feng, H. 2010. Phytase Gene Expression in Lactobacillus and Analysis of Its Biochemical Characteristics. Microbiol. Res., 165: 329-335.