Parametric and Non-parametric Measures for Evaluating Yield Stability and Adaptability in Barley Doubled Haploid Lines

Authors
1 Department of Agriculture, Payame Noor University, P. O. BOX: 19395-3697, Tehran, Islamic Republic of Iran.
2 Department of Plant Breeding and Production, Imam Khomeini International University, P. O. Box: 34149- 16818, Qazvin, Islamic Republic of Iran.
Abstract
Multi-environment trials have a significant role in selecting the best cultivars to be used at different locations. The objectives of the present study were to evaluate GE interactions for grain yield in barley doubled haploid lines, to determine their stability and general adaptability and to compare different parametric and nonparametric stability and adaptability measures. For these purposes, 40 doubled haploid lines as well as two parental cultivars (Morex and Steptoe) were evaluated across eight variable environments (combinations of location-years-water regime) during the 2012-2013 and 2013-2014 growing seasons in Iran. The Additive Main effect and Multiplicative Interaction (AMMI) analysis revealed that environments, genotypes, and GE interaction as well as the first four Interaction Principal Component Axes (IPCA1 to 4) were significant, indicating differential responses of the lines to the environments and the need for stability and general adaptability analysis. The stability parameters Si(3), Si(6), NP2, NP3, NP4 as well as Fox-rank (Top) were positively and significantly correlated with mean yield, suggesting these statistics can be used interchangeably as suitable parameters for selecting stable lines. The results of Principal Components Analysis (PCA) showed that the first two PCAs explained 92% of total variation for ranks of mean grain yield and parameters, and also clustered stability parameters on the basis of static and dynamic concepts of stability. In general, the parametric and non-parametric stability measures revealed that among tested doubled haploid lines at different environments, the line DH-30 followed by DH-29 and DH-3 were identified as lines with high grain yields as well as the most stable for variable environments of semi-arid regions of Iran.

Keywords


1. Ahmadi, A.,Mohammadi, A. and Najafi Mirak, T. 2012a. Targeting Promising Bread Wheat (Triticum aestivum L.) Lines for Cold Climate Growing Environments Using AMMI and SREG GGE Biplot Analyses. J. Agr. Sci. Tech., 14: 645-657.
2. Ahmadi, J., Vaezi B., Shaabani A. and Khademi K. 2012b. Multi-environment Yield Trials of Grass Pea (Lathyrus sativus L.) in Iran Using AMMI and SREG GGE. J. Agr. Sci. Tech., 14: 1075-1085.
3. Becker, H. C. and Leon, J. 1988. Stability Analysis in Plant Breeding. Plant Breed., 101: 1-23.
4. Ceccarelli, S. 1996. Positive Interpretation of Genotype by Environment Interactions in Relation to Sustainability and Biodiversity. In: “Plant Adaptation and Crop Improvement” (Eds.): Cooper, M. and Hammer, G. L.. Wallingford, UK, PP. 467-486.
5. De Martonne, E. 1925. Traite de Geographie Physique: 3 Tomes. Armand Colin, Paris.
6. Dehghani, H., Sabaghpour, S. H. and Sabaghnia, N. 2008. Genotype×Environment Interaction for Grain Yield of Some Lentil Genotypes and Relationship among Univariate Stability Statistics. Span. J. Agric. Res., 6: 385-394.
7. Dorostkara, S., Dadkhodaie, A. and Heidar, B. 2015. Evaluation of Grain Yield Indices in Hexaploid Wheat Genotypes in Response to Drought Stress. Arch. Acker. Pfl. Boden., 61: 397-413.
8. Eberhart, S.A. and Russell, W.A. 1966. Stability Parameters for Comparing Varieties. Crop. Sci., 6: 36-40.
9. Fan, X. M., Kang, M. S., Chen, H., Zhang, Y., Tan, J. and Xu, C. 2007. Yield Stability of Maize Hybrid Evaluated in Multi-Environment Trials in Yunnan, China. Agron J., 99: 220-228.
10. Finlay, K. W. and Wilkinson, G. N. 1963. Adaptation in a Plant Breeding Programme. Aust. J. Agric. Res., 14: 742-754.
11. Fox, P., Skovmand, B., Thompson, B., Braun, H. J. and Cormier, R. 1990. Yield and Adaptation of Hexaploid Spring Triticale. Euphytica, 47: 57-64.
12. Francis, T. R. and Kannenberg, L. W. 1978. Yield Stability Studies in Short-season Maize. I. A Descriptive Method for Grouping Genotypes. Can. J. Plant. Sci., 58: 1029-1034.
13. Huehn, M. 1979. Beitrage Zur Erfassung der Phanotypischen Stabilitat. EDV. Med. Biol., 10: 112-117.
14. Huehn, M. 1990. Nonparametric Measures of Phenotypic Stability. Part 1. Theory. Euphytica, 47: 189-194.
15. IRRISTAT. 2005. A Statistical Package for Analysis of Data. International Rice Research Institute, Manila, Philippines.
16. Jamshidmoghaddam, M. and Pourdad, S. S. 2013. Genotype×Environment Interactions for Seed Yield in Rainfed Winter Safflower (Carthamus tinctorius L.) Multi-environment Trials in Iran. Euphytica, 190: 357-369.
17. Kang, M. S. 1988. A Rank-sum Method for Selecting Hhigh-yielding, Stable Corn Genotypes. Cereal. Res. Commun., 16: 113-15.
18. Kang, M. S. 1990. Genotype-by-Environment Interaction and Plant Breeding. Louisana State University Agricultural Center, Baton Rouge, LA, USA.
19. Kang, M. S. and Pham H. N. 1991. Simultaneous Selection for High Yielding and Stable CropG. Agron. J., 83: 161-165.
20. Kleinhofs, A., Kilian, A., Saghai Maroof, M.A., Biyashe, R. M., Hayes, P., Chen, F. Q., Lapitan, N., Fenwick, A., Blake, T. K., Kanazin, V., Ananiv, E., Dahleen, L., Kudrna, D., Bollinger, J., Knapp, S. J., Liu, B., Sorrells, M., Heun, M., Franckowiak, J. D., Hoffman, D., Skadsen, R. and Steffenson, B. J. 1993. A Molecular, Isozyme and Morphological Map of the Barley (Hordeum vulgare ) Genome. Theor. Appl .Genet., 86: 705-712.
21. Lin, C. S., Binns, M. R. and Lefkovitch, L. P. 1986. Stability Analysis: Where do We Stand? Crop. Sci., 26: 894-900.
22. Mohammadi, R., Abdulahi, A., Haghparast, R. and Armion, M. 2007. Interpreting Genotype×Environment Interactions for Durum Wheat Grain Yields Using Nonparametric Methods. Euphytica, 157: 239-251.
23. Mohammadi, R. and Amri, A. 2008. Comparison of Parametric and Non-parametric Methods for Selecting Stable and Adapted Durum Wheat Genotypes in Variable Environments. Euphytica, 159: 419-432.
24. Mohammadi, R., Sadeghzadeh, D., Armion, M. and Amri, A. 2011. Evaluation of Durum Wheat Experimental Lines under Different Climate and Water Regime Conditions of Iran. Crop. Pasture. Sci., 62: 137-151.
25. Nassar, R. and Huehn, M. 1987. Studies on Estimation of Phenotypic Stability: Tests of Significance for Nonparametric Measures of Phenotypic Stability. Biometric., 43: 43-53.
26. Pour-Aboughadareh, A. R., Naghavi, M. R. and Khalili, M. 2013. Water De‌cifit Stress Tolerance in Some of Barley Genotypes and Landraces under Field Conditions. Not. Sci. Biol., 5: 249-255.
27. Purchase, J. L., Hatting, H. and Van Deventer, C. S. 2000. Genotype×Environment Interaction of Winter Wheat in South Africa. II. Stability Analysis of Yield Performance. S. Afr. J. Plant. Soil., 17: 101-107.
28. SAS Institute. 1987. SAS/STAT USER’S GUIDE: Ver. 9.1. SAS Inst Inc., Cary, NC, USA.
29. Segherloo, A. E., Sabaghpour, S. H., Dehghani, H. and Kamrani, M. 2008. Non-parametric Measures of Phenotypic Stability in Chickpea Genotypes (Cicer arietinum L.). Euphytica, 162: 221- 229.
30. Shukla, G. 1972. Some Statistical Aspects of Partitioning Genotype Environmental Components of Variability. Hered.,. 29: 237-245.
31. Sio-Se Mardeh, A., Ahmadi, A., Poustini, K. and Mohammadi, V. 2006. Evaluation of Drought Resistance Indices under Various Environmental Conditions. Field. Crop. Res., 98: 222-229.
32. STATISTICA Statistical Software. 2007. STATISTICA Data Analysis Software System: Ver.8. Sta Stof Inc., North Melbourne, Australia.
33. Tesemma, T., Tsegaye, S., Belay, B., Bechere, E. and Mitiku, D. 1998. Stability of Performance of Tetraploid Wheat Landraces in the Ethiopian Highland. Euphytica, 102: 301-308.
34. Thennarasu, K. 1995. On Certain Non-parametric Procedures for Studying Genotype Environment Interactions and Yield Stability. PhD., PJ School IARI, New Delhi, India.
35. Ward, J. H. 1963. Hierarchical Grouping to Optimize an Objective Function. J. Am. Stat. Assoc., 58: 236-244.
36. Wricke, G. 1962. Uber Eine Methode zur Erfassung der Oekologischen Streubreite in Feldversuchen. Zeitschr. f. Pflanzenz, 47: 92-96.
37. Zobel, R. W., Wright, M. J. and Gauch, H. G. 1988. Statistical Analysis of a Yield Trial. Agron. J., 80: 388-393.