Molecular Identification and Characterization of Phosphate Solubilizing Pseudomonas sp. Isolated from Rhizosphere of Mash Bean (Vigna Mungo L.) for Growth Promotion in Wheat

Authors
1 Institute of Microbial Culture Collection of Pakistan (IMCCP), National Agricultural Research Center, Islamabad-45500, Pakistan.
2 Department of Soil Science and SWC, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Pakistan.
3 Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
Abstract
Bio-inoculants have potential role in plant growth promotion. The present study evaluated the potential of Pseudomonas strains as bio-inoculants in wheat on the basis of plant growth promotion and physiological characterization. The 16S rRNA gene sequencing and phylogenetic analysis revealed that four isolated strains belonged to genus Pseudomonas. These strains were positive for phosphorus solubilization and indole acetic acid production, whereas only two strains were positive candidate for their nitrogen fixing ability as determined by presence or absence of nifH gene through amplification from polymerase chain reaction. The pot experiment showed that the integrated use of Pseudomonas strains as co-inoculant and 50% applied mineral fertilizers enhanced the maximum wheat growth and development from 58 to 140% for different shoot and root growth parameters. The strain NCCP-45 and NCCP-237 were closely related to Pseudomonas beteli and Pseudomonas lini, respectively. These isolated strains can be used to increase crop productivity by using as a bio-fertilizer inoculum.

Keywords


1. Abbas-Zadeh, P., Saleh-Rastin, N., Asadi-Rahmani, H., Khavazi, K., Soltani, A., Shoary-Nejati, A. R. and Miransari, M. 2010. Plant Growth Promoting Activities of Fluorescent pseudomonads, Isolated from the Iranian Soils. Acta Physiol. Plant., 32, 281-288.
2. Abd El-Azeem, S. A. M., Mehana, T. A. and Shabayek, A. A. 2007. Some Plant Growth Promoting Traits of Rhizobacteria Isolated from Suez Canal Region, Egypt. African Crop Sci. Conf. Proceed., 8: 1517-1525.
3. Abdoli, M., Saeidi, M., Honarmand, S. J. and Azhand, M. 2013. The Effect of Foliar Application of Indole-3-Acetic Acid (IAA) and Roles of Ear Photosynthesis on Grain Yield Production of Two Wheat Cultivars (Triticum aestivum L.) under Post Anthesis Water Deficit. Intl. Res. J. Appl. Basic. Sci., 4(6): 1506-1513.
4. Ahmed, I., Yokota, A. and Fujiwara, T. 2007. A Novel Highly Boron Tolerant Bacterium, Bacillus boroniphilus sp. nov., Isolated from Soil, that Requires Boron for Its Growth. Extremophile., 11: 217–224.
5. Anjum, M.A., Zahir, Z. A., Arshad, M. and Ashraf, M. 2011. Isolation and Screening of Rhizobia for Auxin Biosynthesis and Growth Promotion of Mung Bean (Vigna radiata L.) Seedlings under Axenic Conditions. Soil Environ., 30: 18-26.
6. Bowen, G. D. and Rovira, A. D. 1999. The Rhizosphere and Its Management To Improve Plant Growth, In: "Advances in Agronomy", (Ed.): Donald, L. S.. Academic Press, London. PP. 1-102.
7. Chen, W. M., Moulin, L., Bontemps, C., Vandamme, P., Bena, G. and Boivin-Masson, C. 2003. Legume Symbiotic Nitrogen Fixation by Beta-proteobacteria is Widespread in Nature. J. Bacteriol., 185: 7266-7272.
8. Chen, Y. P., Rekha, P. D., Arun, A. B., Shen, F. T., Lai, W. A. and Young, C. C. 2006. Phosphate Solubilizing Bacteria from Subtropical Soil and Their Tricalcium Phosphate Solubilizing Abilities. Appl. Soil. Ecol., 34: 33-41.
9. de Lorenzo, V. 2000. Pseudomonas Entering the Post-genomic Era. Environ. Microbiol., 2: 349-354.
10. De Meyer, S. E., Van Hoorde, K., Vekeman, B., Braeckman, T. and Willems, A. 2011. Genetic Diversity of Rhizobia Associated with Indigenous Legumes in Different Regions of Flanders (Belgium). Soil. Biol. Biochem., 43: 2384-2396.
11. Dewhirst, F. E., Shen, Z., Scimeca, M. S., Stokes, L. N., Boumenna, T., Chen, T., Paster, B. J. and Fox, J. G. 2005. Discordant 16S and 23S rRNA Gene Phylogenies for the Genus Helicobacter: Implications for Phylogenetic Inference and Systematics. J. Bacteriol., 187: 6106-6118.
12. Dey, R., Pal, K. K., Bhatt, D. M. and Chauhan, S. M. 2004: Growth Aromotion and Yield Enhancement of Peanut (Arachis hypogaea L.) by Application of Plant Growth-promoting Rhizobacteria. Microbiol. Res., 159: 371-394.
13. Dobert, R. C., Breil, B. T. and Triplett, E. W. 1994. DNA Sequence of the Common Nodulation Genes of Bradyrhizobium elkanii and Their Phylogenetic Relationship to Those of Other Nodulating Bacteria. Mol. Plant-Microbe Interac.: MPMI., 7: 564-572.
14. Duarah, I., Deka, M., Saikia, N. and Deka Boruah, H. P. 2011. Phosphate Solubilizers Enhance NPK Fertilizer Use Efficiency in Rice and Legume Cultivation. 3 Biotech., 1: 227–238.
15. Gaby, J. C. and Buckley, D. H. 2014. A Comprehensive Aligned nifH Gene Database: A Multipurpose Tool for Studies of Nitrogen-fixing Bacteria. Database., 2014: Article ID: bau001; doi:10.1093/database/bau001.
16. Glick, B. R. 1995. The Enhancement of Plant Growth by Free-living Bacteria. Can. J. Microbiol., 41: 109-117.
17. Hayat, R., Ali, S., Amara, U., Khalid, R. and Ahmed, I. 2010. Soil Beneficial Bacteria and Their Role in Plant Growth Promotion: A Review. Ann. Microbiol., 60: 579-598.
18. Hayat, R., Khalid, R., Ehsan, M., Ahmed, I., Yokota, A. and Ali, S. 2013. Molecular Characterization of Soil Bacteria for Improving Crop Yield in Pakistan. Pak. J. Bot., 45: 1045-1055.
19. Herman, M. A. B., Nault, B. A. and Smart, C. D. 2008. Effects of Plant Growth-promoting Rhizobacteria on Bell Pepper Production and Green Peach Aphid Infestations in New York. Crop Protec., 27: 996-1002.
20. Keneni. A., Assefa, F. and Prabu, P. C. 2010. Isolation of Phosphate Solubilizing Bacteria from the Rhizosphere of Faba Bean of Ethiopia and Their Abilities on Solubilizing Insoluble Phosphates. J. Agr. Sci. Tech., 12: 79-89.
21. Kwon, S. W., Kim, J. S., Park, I. C., Yoon, S. H., Park, D. H., Lim C. K. and Go, S. J. 2003. Pseudomonas koreensis sp. nov., Pseudomonas umsongensis sp. nov. and Pseudomonas jinjuensis sp. nov., Novel Species from farm Soils in Korea. Int. J. Syst. Evol. Microbiol., 53: 21-27.
22. Mignard, S. and Flandrois, J. P. 2006. 16S rRNA Sequencing in Routine Bacterial Identification: A 30-month Experiment. J. Microbiol. Method., 67: 574-581.
23. Mózner, Z., Tabi, A. and Csutora, M. 2012. Modifying the Yield Factor Based on More Efficient Use of Fertilizer: The Environmental Impacts of Intensive and Extensive Agricultural Practices. Eco. Ind., 16: 58-66.
24. Nishimori, E., Kita-Tsukamoto, K. and Wakabayashi, H. 2000. Pseudomonas plecoglossicida sp. nov., the Causative Agent of Bacterial Haemorrhagic Ascites of Ayu, Plecoglossus altivelis. Int. J. Syst. Evol. Microbiol., 50: 83-89.
25. Patten, C. L. and Glick, B. R. 1996. Bacterial Biosynthesis of Indole-3-acetic Acid. Can. J. Microbiol., 42: 207-220.
26. Poly, F., Ranjard, L., Nazaret, S., Gourbière, F. and Monrozier, L. J. 2001. Comparison of nifH Gene Pools in Soils and Soil Microenvironments with Contrasting Properties. Appl. Environ. Microbiol., 67: 2255-2262.
27. Rodrı́guez, H. and Fraga, R. 1999. Phosphate Solubilizing Bacteria and Their Role in Plant Growth Promotion. Biotechnol. Adv., 17: 319-339.
28. Roohi, A., Ahmed, I., Iqbal, M. and Jamil, M. 2012. Preliminary Isolation and Characterization of Halotolerant and Halophilic Bacteria from Salt Mines of Karak, Pakistan. Pak. J. Bot., 44: 365-370.
29. Shahzad, S. M., Khalid, A., Arif, M. S., Riaz, M., Ashraf, M., Iqbal, Z. and Yasmeen, T. 2014. Co-inoculation Integrated with P-enriched Compost Improved Nodulation and Growth of Chickpea (Cicer arietinum L.) under Irrigated and Rainfed Farming Systems. Biol. Fertil. Soil., 50:1–12.
30. Tindall, J. B., Sikorski, J., Simbert, A. R. and Krieg, R. N. 2007. Phenotypic Characterization and the Principles of Comparative Systematics, In: "Methods for General and Molecular Microbiology", (Eds.): Reddy, C. A., Beveridge, T. J., Breznak, J. A., Marzluf, G. A., Schmidt, T. M. S., Snyder, L. R.. American Society for Microbiology, Washington, DC, PP. 330-393.
31. Torsvik, V., Goksoyr, J. and Daae, F. L. 1990. High Diversity in DNA of Soil Bacteria. Appl. Environ. Microbiol., 56: 782-787.
32. Wu, S. C., Cao, Z. H., Li, Z. G., Cheung, K. C. and Wong, M. H. 2005. Effects of Biofertilizer Containing N-fixer, P and K Solubilizers and AM Fungi on Maize Growth: a Greenhouse Trial. Geoderma, 125: 155-166.
33. Xie, H., Pasternak, J. J. and Glick, B. R. 1996. Isolation and Characterization of Mutants of the Plant Growth-promoting Rhizobacterium Pseudomonas putida GR12-2 that Overproduce Indole Acetic Acid. Curr. Microbiol., 32: 67-71
34. Zabihi, H. R., Savaghebi, G.R., Khavazi, K., Ganjali, A. and Miransari, M. 2011. Pseudomonas Bacteria and Phosphorous Fertilization, Affecting Wheat (Triticum aestivum L.) Yield and P Uptake under Greenhouse and Field Conditions. Acta Physiol Plant., 33: 145-152.