1. Adamowski, J. F. 2008. Development of a Short-term River Flood Forecasting Method for Snowmelt Driven Floods Based on Wavelet and Cross Wavelet Analysis. J. Hydrol., 353: 247-266.
2. Adamowski, J. and Sun, K. 2010. Development of a Coupled Wavelet Transform and Neural Network Method for Flow Forecasting of Non-perennial Rivers in Semi-arid Watersheds. J. Hydrol., 390(1-2): 85-91.
3. Adamowski, J. and Chan, H. F. 2011. A Wavelet Neural Network Conjunction Model for Groundwater Level Forecasting. J. Hydrol., 407: 28–40.
4. Agarwal, A., Mishra, S. K., Ram, S. and Singh, J. K. 2006. Simulation of Runoff and Sediment Yield Using Artificial Neural Networks. Biosyst. Eng., 94(4): 597-613.
5. Agarwal, B. L. 2007. Basic Statistics. New Age International (P) Ltd., Publishers, New Delhi, India,763 PP.
6. Agarwal, R. K and Singh, J. K. 2003. Application of a Genetic Algorithm in the Development and Optimization of a Non-linear Dynamic Runoff Model. Biosyst. Eng., 86(1): 87-95.
7. Asadi, A. 2013. The Comparison of Lumped and Distributed Models for Estimating Flood Hydrograph (Study Area: Kabkian Basin). J. Electron.Commun. Eng. Res., 1(2): 7-13.
8. Cannas, B., Fanni, A., Sias, G., Tronci, S. and Zedda, M. K. 2005. River Flow Forecasting Using Neural Networks and Wavelet Analysis. Geophys. Res. Abstr. 7(08651). Ref-ID: 1607-7962/gra/EGU05-A-08651 © European Geosciences :union: 2005.
9. Coulibaly, P., Anctil, F. and Bobee, B. 2000. Daily Reservoir Inflow Forecasting Using Artificial Neural Networks with Stopped Training Approach. J. Hydrol., 230: 244-257.
10. Hagan, M. T. and Menhaj, M. 1994. Training Feed Forward Networks with the Marquardt Algorithm. IEEE Trans. Neural Network., 5(6): 989–993. doi:10.1109/72.329697.
11. Khalil, B., Ouarda,T. B. M. J. and St-Hilaire, A. 2011. Estimation of Water Quality Characteristics at Ungauged Sites Using Artificial Neural Networks and Canonical Correlation Analysis. J. Hydrol., 405: 277-287.
12. Kim, T. W. and Valdes, J. B. 2003. Non-linear Model for Drought Forecasting Based on a Conjunction of Wavelet Transforms and Neural Networks. J. Hydrol. Eng., 6: 319-328.
13. Kisi, O. 2011. Wavelet Regression Model as an Alternative to Neural Network for River Stage Forecasting. Water Resour. Manage., 25:579-600.
14. Kisi, O. 2010. Daily Suspended Sediment Estimation Using Neuro-wavelet Models. International J. Earth Sciences. 99:1471-1482.
15. Kumar, A. 1993. Dynamic Nodels for Daily Rainfall-runoff-sediment Yield for Sub-catchment of Ramganga River. PhD. Thesis, Department of Soil and Water Conservation Engineering, G. B. Pant University of Agriculture and Technology, Pantnagar, India.
16. Liu, Q. J., Shi, Z. H., Fang, N. F., Zhu, H. D. and Ai, L. 2013. Modeling the Daily Suspended Sediment Concentration in a Hyperconcentrated River on the Loess Plateu, China Using Wavelet-ANN Approach. Geomorpol., 186: 181-190.
17. Maheswaran R. and Khosa R. 2012. Comparative Study of Different Wavelets for Hydrologic Forecasting. Comput. Geosci. 46:284-295.
18. Murtagh, F., Starck, J. L. and Renaud, O. 2004. On Neuro-wavelet Modeling. Decis. Support Syst., 37: 475-484.
19. Muttil, N. and Chau, K.W. 2006. Neural Network and Genetic Programming for Modeling Coastal Algal Blooms. Int. J. Environ. Pollut., 28(3-4): 223-238.
20. Nakhaei, M. and Nasr, A. S. 2012. A Combined Wavelet-artificial Neural Network Model and Its Application to the Prediction of Groundwater Level Fluctuations. JGeope, 2(2): 77-91.
21. Nash, J. E. and Shutcliff, J. V. 1970. River Flow Forecasting through Conceptual Models-I. J. Hydrol., 10: 282-290.
22. Nourani, V., Kisi, O. and Komasi, M. 2011. Two Hybrid Artificial Intelligence Approaches for Modeling Rainfall-runoff Process. J. Hydrol., 402(1-2): 41-59.
23. Partal, T. and Kisi, O. 2007. Wavelet and Neuro Fuzzy Conjunction Model for Precipitation Forecasting. J. Hydrol., 342:199-212.
24. Partal, T. and Cigizoglu, H. K. 2008. Estimation and Forecasting of Daily Suspended Sediment Data Using Wavelet-neural Networks. J. Hydrol., 358(3–4):317–331.
25. Rao, Y. R. S., Krisha, B. and Venkatesh, B. 2014. Wavelet Based Neural Networks for Daily Stream Flow Forecasting. Int. J. Emerg. Technol. Adv. Eng., 4(1): 307-317.
26. Rathinasamy, M. and Khosa, R. 2012. Multiscale Nonlinear Model for Monthly Streamflow Forecasting: A Wavelet-based Approach. J. Hydroinform., 14(2): 424-442.
27. Remesan, R., Shamim, M. A., Han, D. and Mathew, J. 2009. Runoff Prediction Using an Integrated Hybrid Modelling Scheme. J. Hydrol., 372(1-4): 48-60.
28. Sachan, A. 2008. Suspended Sediment Load Prediction Using Wavelet Neural Network Model. MTech. Thesis. Department of SWCE, GBPUAT, Pantnagar (UK), India, 152 PP.
29. Shu, C. and Ouarda, T. B. M. J. 2007. Flood Frequency Analysis at Ungauged Sites Using Artificial Neural Networks in Canonical Correlation Analysis Physiographic Space. Water Resour. Res., 43: W07438. doi:10.1029/2006WR005142.
30. Sivakumar, B., Jayawardena, A. W. and Fernando, T. M. K. G. 2002. River Flow Forecasting: Use of Phase-space Reconstruction and Artificial Neural Networks Approaches. J. Hydrol., 265: 225-245.
31. Taormina, R., Chau, K. W. and Sethi, R. 2012. Artificial Neural Network Simulation of Hourly Groundwater Levels in a Coastal Aquifer System of the Venice Lagoon. Eng. Appl. Artif. Intel., 25(8): 1670-1676.
32. Tewari, S. 2007. Haar-A Trous Wavelet Transform based Mulit-resolution Grey Model for Runoff Prediction. MTech. Thesis. Department of SWCE, GBPUAT, Pantnagar (UK), 74 PP.
33. Tiwari, M. K. and Chatterjee, C. 2010. Development of an Accurate and Reliable Hourly Flood Forecasting Model Using Wavelet-Bootstrap-ANN (WBANN) Hybrid Approach. J. Hydrol., 394(3-4): 458-470.
34. Wang, W. and Ding, J. 2003. Wavelet Network Model and Its Application to the Prediction of Hydrology. Nat. Sci., 1(1): 67-71.
35. Wu, C. L., Chau, K. W. and Li, Y. S. 2009. Predicting Monthly Streamflow Using Data-driven Models Coupled with Data-preprocessing Techniques. Water Resour. Res., 45: W08432. doi:10.1029/2007WR006737.