Data Reduction of a Numerically Simulated Sugar Extraction Process in Counter-current Flow Horizontal Extractors

Authors
1 Bioprocessing and Biodetection Lab, Department of Food Science, Technology and Engineering, University of Tehran, Islamic Republic of Iran.
2 Department of Food Science and Technology, College of Agriculture, Islamic Azad University, Shahre Kord Branch, Shahre Kord, Islamic Republic of Iran.
Abstract
In this work, Response Surface Methodology (RSM) and Artificial Neural Networks (ANN) were employed for the data reduction of a numerically simulated extraction process of sugar in an industrial RT2 extractor. The numerical model developed in OpenFOAM library was first validated using actual plant data and its stability and sensitivity to the processing variables was tested. Then, the model was used to generate data of juice and pulp sugar concentrations as affected by the main processing parameters including draft, Silin number, and capacity. The data were modelled using RSM and ANN. Both RSM and ANN were able to predict the data accurately, however, R2 values obtained for ANN were slightly higher. Since the numerical model can be time consuming to be solved for all data ranges, the regression equation obtained by the RSM method or the network created according to the ANN model can be utilized as fast and ready to use tools to optimize the extractor.

Keywords


1. Ahmed Samatou, J., Engbert Wentink, A., Alexandra J.Rosa, P., Margarida Azevedo, A., Raquel Aires-Barros, M., Bäcker, W. and Górak, A. 2007. What is the title of the paper? 17th European Symposium on Computer Aided Process Engineering, Elsevier, 24.
2. Almeida, R. L., Ravagnani, M. A. S. S. and Modenes, A. N. 2010. Soybean Oil Extraction in Belt Extractors with Miscella Recirculation. Chem. Eng. Proc., 49: 996-1005.
3. Asadi, M. 2007. Beet-Sugar Handbook. John Wiley and Sons, Inc., Hoboken, New Jersey.
4. Baümler, E. R., Carelli, A. A., Crapiste, G. H. and Carrín, M. E. 2011. Solvent Extraction Modeling of Vegetable Oil and Its Minor Compounds. J. Food Eng., 107: 186-194.
5. Bruniche-Olsen, H. 1962. Solid–liquid Extraction. Nyt Nordisk Forlag, Copenhagen.
6. Buttersack, C. and Schliephake, D. 1998. Extraction Theory. In: What is title???? (Eds.): Van der Poel, R. W., Schiweck, H. and Schwartz, T.. Verlag Bartens KG, Berlin, Germany, PP. 310-327.
7. Carrín, M. E. and Crapiste, G. H. 2008. Mathematical Modeling of Vegetable Oil–solvent Extraction in a Multistage Horizontal Extractor. J. Food Eng., 85: 418-425.
8. Cerutti, M. L. M. N., de Souza, A. A. U. and de Souza, S. M. D. A. G. U. 2012. Solvent Extraction of Vegetable Oils: Numerical and Experimental Study. Food Biop. Proc., 90: 199-204.
9. Christodoulou, P. 2003. Sugars and Carbohydrates. In: What is title???? (Ed.): Tzia, C.. Marcel Dekker, G. L., Inc., New York.
10. Cussler, E. L. 2009. Diffusion Mass Transfer in Fluid Systems. Third Edition, Cambridge University Press, Cambridge.
11. Ebell, H. O. and Storz, M. 1982. Diffusion. In: What is title???? (Ed.): McGinnis, R. A.. 3rd Edition, Beet Sugar Development Foundation, Fort Collins, PP. 119-153.
12. Fathi, E. and Sefidkon, F. 2012. Influence of Drying and Extraction Methods on Yield and Chemical Composition of the Essential Oil of Eucalyptus sargentii. J. Agr. Sci. Tech., 14: 1035-1042.
13. Fausett, L. 1994. Fundamentals of Neural Networks: Architectures, Algorithms, and Applications. Prentice-Hall, Inc., Location????
14. Ghoreishi, S. M. and Heidari, E. 2013. Extraction of Epigallocatechin-3-gallate from Green Tea via. Supercritical Fluid Technology: Neural Network Modeling and Response Surface Optimization. J. Sup. Flu., 74: 128-136.
15. Izadifar, M. and Abdolahi, F. 2006. Comparison between Neural Network and Mathematical Modeling of Supercritical CO2 Extraction of Black Pepper Essential Oil. J. Sup. Flu., 38: 37–43.
16. Kamali, M. J. and Mousavi, M. 2008. Analytic, Neural Network, and Hybrid Modeling of Supercritical Extraction of α-Pinene. Journal name?? 47: 168–173.
17. Linder, P. W., Polson, A. and Rodaers, A. L. 1976. The Diffusion Coefficient of Sucrose in Water. J. Chem. Edu., 53: 330-332.
18. Majdi, S., Barzegar, M., Jabbari, A. and AghaAlikhani, M. 2012. Supercritical Fluid Extraction of Tobacco Seed Oil and Its Comparison with Solvent Extraction Methods. J. Agr. Sci. Tech., 14: 1053-1065.
19. Maroulis, Z. B. and Saravacos, G. D. 2003. Food Process Design. CRC Press.
20. McGinnis, R. A. 1982. Beet-sugar Technology. Beet Sugar Development Foundation, Fort Collins.
21. Mostoufi, N., Faridkhou, A., Gharebagh, R. S. and Norouzi, H. R. 2010. Dynamic Modelling of the Sugar Extraction Process from Sugar Beet. Food Manufac. Eff., 3: 49-56.
22. Nakase, M. and Takeshita, K. 2012. Numerical and Experimental Study on Oil-water Dispersion in New Countercurrent Centrifugal Extractor. Procedia Chem., 7: 288-294.
23. Rajaei, A., Barzegar, M., Hamidi, Z. and Sahari, M. 2010. Optimization of Extraction Conditions of Phenolic Compounds from Pistachio (Pistachia vera) Green Hull through Response Surface Method. J. Agr. Sci. Tech., 12: 605-615.
24. Saravakos, G. D. and Kostaropoulos, A. E. 2002. Handbook of Food Processing Equipment. Springer, Location???
25. Sotudeh-Gharebagh, R. S. H. M. N. N. H. R. 2009. Modeling and Optimization of the Sugar Extraction Process. Int. J. Food Eng., 5: 1-21.
26. Swingler, K. 1996. Applying Neural Networks: A Practical Guide. Morgan Kaufman Publishers, Inc., San Francisco.
27. Thomas, G. C., Veloso, G. O. and Krioukov, V. G. 2007. Mass Transfer Modelling in Counter-current Crossed Flows in an Industrial Extractor. Food Biop. Proc., 85: 77-84.
28. Treybal, R. E. 1980. Mass-transfer Operations. McGraw-Hili, Inc., Singapore.
29. Van der Poel, R. W., Schiweck, H. and Schwartz, T. 1998. Sugar Technology. Verlag Bartens KG, Berlin.
30. Veloso, G. O., Krioukov, V. G. and Vielmo, H. A. 2005. Mathematical Modeling of Vegetable Oil Extraction in a Counter-current Crossed Flow Horizontal Extractor. J. Food Eng., 66: 477-486.
31. Yasoubi, P., Barzegar, M., Sahari, M. and Azizi, M. 2010. Total Phenolic Contents and Antioxidant Activity of Pomegranate (Punica granatum L.) Peel Extracts. J. Agr. Sci. Tech., 9: 35-42.