Population Structure and Sexual Fertility of Colletotrichum gloeosporioides sensu lato from Citrus in Northern Iran

Authors
1 Department of Plant Protection, Abouraihan Campus, University of Tehran, Pakdasht, Islamic Republic of Iran.
2 Department of Plant Protection, College of Agriculture and Natural Resources, University of Tehran, Karaj, Islamic Republic of Iran.
3 Department of Plant Pathology, Iranian Research Institute of Plant Protection, Tehran, Islamic Republic of Iran.
Abstract
Anthracnose caused by Colletotrichum gloeosporioides s. l. is one of the most important diseases of citrus in northern Iran. To study the genetic structure of C. gloeosporioides s. l. from citrusspp., infected samples were collected from three citrus cultivating regions of northern Iran, during the summer of 2009. Fifty one monoconidial isolates were used as the objective of REP- and BOX-PCR fingerprintings. Eight fingerprinting groups were observed in the constructed phenogram. The largest proportion (94.37%) of total genetic diversity (Ht) was attributed to diversity within populations (Hs). Estimates of Nei’s genetic similarity and distances exhibited the high level of similarity among three populations. The value of gene flow, NM= 8.4, indicates that there is low limitation to gene flow among these geographically distant populations, which make these groups genetically homogenous. The results indicate that the three geographic populations are not developing independently and can be part of a Mega-population. Forty three isolates were divided into 19 groups in the phenogram constructed by combination of morphological characteristics data. Estimation of correlation between morphologic and rep-PCR matrixes indicated a weak and non-significant correlation between morphology and rep-PCR haplotypes (r= 0.2, P= 0.992). Fifty one isolates were examined to clarify their sexual behavior. Eight isolates were identified as homothallic and 14 successful outcrosses were observed among self-sterile isolates.

Keywords


1. Abang, M. M., Asiedu, R., Hoffmann, P., Wolf, G. A., Mignouna, H. D. and Winter, S. 2006. Pathogenic and Genetic Variability among Colletotrichum gloeosporioides Isolates from Different Yam Hosts in the Agroecological Zones in Nigeria. Phytopathol., 154: 51-61.
2. Andrews, A. C. 1961. Acclimatization of Citrus Fruits in the Mediterranean Region. Agri. His., 35(1): 35–46.
3. Brown, A. E., Sreenivasaprasad, S. and Tinmer, L. W. 1996. Molecular Characterization of Slow-Growing Orange and Key Lime Anthracnose Strains of Colletotrichum from Citrus as C. acutatum. Phytopathol., 86: 523-527.
4. Bayraktar, H. 2010. Genetic Diversity and Population Structure of Fusarium oxysporum f. sp. cepae, the Causal Agent of Fusarium Basal Plate Rot on Onion, Using RAPD Markers. J. Agri. Sci., 16: 139-149.
5. Chilton, S. J. P. and Wheeler, H. E. 1949. Genetics of Glomerella. VII. Mutation and Segregation in Plus Cultures. Am. J. Bot., 36: 717–721.
6. Edgerton, C. W. 1914. Plus and Minus Strains in Genus Glomerella. Mycol., 47: 311-316.
7. Emerson, R. 1958. Mycological Organization. Mycol., 50: 589-621.
8. Excoffier, L., Smouse, P. E. and Quattro, J. M. 1992. Analysis of Molecular Variance Inferred from Metric Distances among DNA Haplotypes: Application to Human Mitochondrial DNA Restriction Data. Gene., 131: 479-491.
9. Garcia-Serrano, M., Laguna, E. A., Rodriguez-Guerra, R. and Simpson, J. 2008. Analysis of the MAT1-2-1 Gene of Colletotrichum lindemuthianum. MycoSci., 49: 312-317.
10. Gower, J. C. 1971. A General Coefficient of Similarity and some of Its Properties. Biometr., 27: 857–874.
11. Guetsky, R., Kobiler, I. and Wang, X. 2005. Metabolism of the Flavonoid Epicatechin by Laccase of Colletotrichum gloeosporioides and Its Effect on Pathogenicity on Avocado Fruits. Phytopathol., 95: 1341-1348.
12. Gunnell, P. S. and Gubler, W. D. 1992. Taxonomy and Morphology of Colletotrichum Species Pathogenic to Strawberry. Mycol., 84: 157–165.
13. Jagtap, P. T. and Sontakke, P. L. 2009. Taxonomy and Morphology of Colletotrichum truncatum Isolates Pathogenic to Soybean. Afr. J. Agri. Res., 4: 1483-1487.
14. Khansarei-Atigh, M., Javan-Nikkhah, M., Khodaparast, A., Babrei, M. and Ghazanfarei, K. 2010. Study on Sexual Reproduction and Determination of Vegetative Compatibility Groups of Glomerella cingulata Isolates from Citrus in Northern Iran. Iran. J. Plant Protect., 41: 71-79.
15. Kubik, C., Honig, J., Meyer, W. A. and Bonos, S. A. 2009. Genetic Diversity of Creeping Bentgrass Cultivars Using SSR Markers. Int. Turfgrass Soc. Res. J., 11: 533-547.
16. Leung, H. and Taga, M. 1988. Magnaporthe grisea (Pyricularia grisea), the Blast Fungus. Adv. Plant Pathol., 6: 175–188.
17. Lewontin, R. C. 1972. The Apportionment of Human Diversity. Evol. Biol., 6: 381-398.
18. Lucas, G. B., Chilton, S. J. P. and Edgerton, C. W. 1944. Genetics of Glomerella. I. Studies of the Behavior of Certain Strains. Am. J. Bot., 31: 233–239.
19. McDermott, J. M. and McDonald, B. A. 1993. Gene Flow in Plant Pathosystems. Ann. Rev. Phytopathol., 31: 353-373.
20. McDonald, B. A. 1997. The Population Genetics of Fungi: Tools and Techniques. Phytopathol., 87: 448-453.
21. McDonald, B. A. and Linde, C. 2002. Pathogen Population Genetics, Evolutionary Potential and Durable Resistance. Ann. Rev. Phytopathol., 40: 349-379.
22. Milgroom, M. G. 1996. Recombination of Multilocus Structure of Fungal Populations. Ann. Rev. Phytopathol., 34: 457-477.
23. Milgroom, M. G. and Peever, P. T. 2003. Population Biology of Plant Pathogens: The Synthesis of Plant Disease Epidemiology and Population Genetics. Plant Dis., 87: 608-617.
24. Nei, M. 1973. Analysis of Gene Diversity in Subdivided Populations. PNAS, USA, 70: 3321-3323.
25. Nei, M. and Li, W. H. 1979. Mathematical Model for Studying Genetic Variations in Terms of Restriction Endonucleases. PNAS, USA, 76: 5269–5273.
26. Nguyen, T. H. P., Sall, T., Bryngelsson, T. and Liljeroth, E. 2009. Variation among Colletotrichum gloeosporioides Isolates from Infected Coffee Berries at Different Locations in Vietnam. Plant Pathol., 58: 898-909.
27. Petrak, F. and Esfandiari, E. 1941. Beiträge zur Kenntnis der Iranischen Pilzflora. Ann. Mycol., 39: 204-228.
28. Photita, W., Taylor, P. W. J., Ford, R., Hyde, K. D. and Lumyong, S. 2005. Morphological and Molecular Characterization of Colletotrichum Species from Herbaceous Plant in Thailand. Fung. Div., 18: 117-133.
29. Rampersad, S. N. 2013. Genetic Structure of Colletotrichum gloeosporioides sensu lato Isolates Infecting Papaya Inferred by Multilocus ISSR Markers. Phytopathol., 103: 182-189 and BMC Evol. Biol., 13: 130.
30. Rampersad, S. N., Perez-Brito, D., Torres-Calzada, C., Tapia-Tussell, R. and Corrington, C. V. 2013. Genetic Structure and Demographic History of Colletotrichum gloeosporioides sensu lato and C. truncatum Isolates from Trinidad and Mexico. BMC Evol. Biol., 13: 130.
31. Rholf, F. J. 1998. Numerical Taxonomy and Multivariate Analysis System (NTSYSpc): Version 2.0. Exeter Publ., Setauket, NY.
32. Rodriguez-Guerra, R., Ramirez, M. T., Enciso, M., Serrano, M., Maldonado, Z., Chavira, M. and Simpson, J. 2005. Heterothallic Mating Observed between Mexican Isolates of Glomerella lindemothina. Mycol., 97: 793-803.
33. Sanders, G. M. and Korsten, L. 2003. A Comparative Morphological Study of South African Avocado and Mango Isolates of Colletotrichum gloeosporioides. Can. J. Bot., 81: 877-885.
34. Smith, B. J. and Black, L. L. 1990. Morphological, Cultural, and Pathogenic Variation among Colletotrichum Species Isolated from Strawberry. Plant Dis., 74: 69–76.
35. Sutton, B. C. 1992. The Genus Glomerella and Its Anamorph Colletotrichum. In: “Colletotrichum Biology, Pathology and Control”, (eds.): Bailey, J. A. and Jeger, M. J.. CAB International, Wallingford, UK, PP. 1-26.
36. Suzuki, T., Miwa, C. T., Ebihara, Y., Ito, Y. and Uematso, S. 2010. Genetic Polymorphism and Virulence of Colletotrichum gloeosporioides Isolated from Strawberry (Fragaria ananassa Duchesne). J. Gen. Plant Pathol., 76: 247-253.
37. Talhinhas, P., Sreenivasaprasad, S., Neves-Martins, J. and Oliveira, H. 2002. Genetic and Morphological Characterization of Colletotrichum acutatum Causing Anthracnose of Lupins. Phytopathol., 92: 986-996.
38. Vaillancourt, L. J., Du, M., Rollinsand, J. and Hanau, R. 2000. Genetic Analysis of Cross Fertility between Two Self-sterile Strains of Glomerella graminicola. Mycol., 92: 430–435.
39. Versalovic, J., Koeuth, T. and Lupski, R. J. 1991. Distribution of Repetitive DNA Sequences in Eubacteria and Application to Fingerprinting of Bacterial Genomes. Nucleic Acid. Res., 19: 6823-6831.
40. Weeds, P. L., Chakraborty, S., Fernandes, C. D., d’A Charchar, M. J., Ramesh, C. R., Kexian, Y. and Kelemu, S. 2003. Genetic Diversity in Colletotrichum gloeosporioides from Stylosanthes spp. at Centers of Origin and Utilization. Phytopathol., 93: 176-185.
41. Wheeler, H. E., Olive, L. S., Ernest, C. T. and Edgerton, C. W. 1948. Genetics of Glomerella. V. Crozier and Ascus Development. Am. J. Bot., 35: 722–728.
42. Wheeler, H. E. 1954. Genetics and Evolution of Heterothallism in Glomerella. Ame. J. Bot., 44: 342–345.
43. Weir, B. S., Johnston, P. R. and Damm, U. 2012. The Colletotrichum gleoesporioides Species Complex. Stud. Micol., 73: 115-180.
44. Yeh, F. C., Yang, R. C., Boyle, T. B., Ye, J. and Mao, J. X. 1999. POPGENE 3.2: The User-friendly Shareware for Population Genetic Analysis. Molecular Biology and Biotechnology Centre, University of Alberta, Edmonton, Alberta, Canada. Retrieved from: http://www.ualberta.ca./~fyeh/fyeh