Physiochemical Changes during Growth and Development of Pineapple (Ananas comosus L. Merr. cv. Sarawak)

Authors
The Center for Research in Biotechnology for Agriculture (CEBAR), Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia.
Abstract
The physical and physiological characteristics of Sarawak pineapple were studied at five different stages of growth from one to five months after anthesis. Changes in fruit length, diameter, pulp color, pulp firmness, pH, total soluble solids, titratable acidity, ascorbic acid content and antioxidant activity were monitored. The Sarawak pineapple exhibited a sigmoid growth pattern during fruit development. The pulp firmness decreased while the total soluble solids increased as the fruit developed, thus improving its edibility and acceptability to the consumers. A reduction in pH and an increase in titratable acidity contributed to the distinct flavor and taste of the Sarawak pineapple. While ascorbic acid content reduced throughout growth and development, the overall antioxidant activity increased in the fruit suggesting a later period of harvesting as the most appropriate. The changes that occurred extrinsically as well as intrinsically suggest that the best time for harvesting the Sarawak pineapple is five months after anthesis.

Keywords


1. Adams, J. B. 1991. Review: Enzyme Inactivation during Heat Processing of Food-stuffs. Int. J. Food Sci. Tech., 26(1): 1–20.
2. Alothman, M., Bhat, R. and Karim, A. A. 2009. UV Radiation-induced Changes of Antioxidant Capacity of Fresh-cut Tropical Fruits. Innov. Food Sci. Emerg., 10(4): 512–516.
3. Anonymous. 2010. Malaysian Pineapple Industry Board 2010. Report of Pineapple Production Statistics According to Variety.
4. Asiedu, J. J. 1987. Physicochemical Changes in Plantain (Musa paradisiaca) during Ripening and the Effect of Degree of Ripeness on Drying. Trop. Sci., 27: 249–260.
5. Bae, S. H. and Suh, H. J. 2007. Antioxidant Activities of Five Different Mulberry Cultivars in Korea. LWT–Food Sci. Technol., 40(6): 955–962.
6. Bartholomew, D. P., Paull, R. E. and Rohrbach, K. G. 2003. The Pineapple: Botany, Production and Uses. CABI Publishing, Wallingford, UK, PP. 1-301.
7. Beltran, E. G. and Macklin, K. E. 1962. On the Chemistry of the Tomato and Tomato Products: A Review of the Literature (1945-1961). Thomas J. Lipton, Hoboken, NJ.
8. Bhat, R., Ameran, S. B., Voon, H. C., Karim, A. A. and Tze, L. M. 2011. Quality Attributes of Starfruit (Averrhoa carambola L.) Juice Treated with Ultraviolet Radiation. Food Chem., 127(2): 641–644.
9. Coppens d’Eeckenbrugge, G., Leal, F. and Duval, M. F. 1997. Germplasm Resources of Pineapple. Hortic. Rev., 21: 133-175.
10. Davey, M. W. and Keulemans, J. 2004. Determining the Potential to Breed for Enhanced Antioxidant Status in Malus: Mean Inter- and Intravarietal Fruit Vitamin C and Glutathione Contents at Harvest and Their Evolution during Storage. J. Agric. Food Chem., 52(26): 8031–8038.
11. Davey, M. W., Auwerkerken, A. and Keulemans, J. 2007. Relationship of Apple Vitamin C and Antioxidant Contents to Harvest Date and Postharvest Pathogen Infection. J. Sci. Food Agric., 87(5): 802–813.
12. Davies, J. N. and Hobson, G. E. 1981. The Constituents of Tomato Fruit the Influence of Environment, Nutrition and Genotype. Crit. Rev. Food Sci. Nutr., 15(3): 205-280.
13. De Poel, B. V., Ceusters, J. and De Proft, M. P. 2009. Determination of Pineapple (Ananas comosus, MD-2 Hybrid Cultivar) Plant Maturity, the Efficiency of Flowering Induction Agents and the Use of Activated Carbon. Sci. Hort., 120(1): 58–63.
14. Dhar, M., Rahman, S. M. and Sayem, S. M. 2008. Maturity and Post-harvest Study of Pineapple with Quality and Shelf-life under Red Soil. Int. J. Sustain. Crop Prod., 3(2): 69-75.
15. Ercisli, S. 2007. Chemical Composition of Fruits in Some Rose (Rosa spp.) Species. Food Chem., 104(4): 1379–1384.
16. FAO. 2012. Pineapple Production Statistics 2010. http://apps.fao.org
17. Felicetti, E. and Maththeis, J. P. 2010. Quantification and Histochemical Localization of Ascorbic Acid in ‘Delicious’, ‘Golden Delicious’, and ‘Fuji’ Apple Fruit during On-tree Development and Cold Storage. Postharvest Biol. Technol., 56(1): 56–63.
18. Fischer, R. L. and Bennett, A. B. 1991. Role of Cell Wall Hydrolases in Fruit Ripening. Annu. Rev. Plant Physiol. Plant Mol. Biol., 42: 675–703.
19. George, D. S., Razali, Z., Santhirasegaram, V. and Somasundram, C. 2015. Effects of Ultraviolet Light (UV-C) and Heat Treatment on the Quality of Fresh-cut Chokanan Mango and Josephine Pineapple. J. Food Sci., 80(2): S426-S434.
20. Groff, J. L., Gropper, S. S. and Hunt, S. M. 1995. The Water Soluble Vitamins Advanced Nutrition and Human Metabolism. West Publishing Company, Minneapolis, PP. 222–231.
21. Gupta, V. K. and Sharma, S. K. 2006. Plants as Natural Antioxidants. Nat. Prod. Radiance, 5(4): 326-334.
22. Jacoba, R. A. 1999. Vitamin C. Modern Nutrition in Health and Disease. 9th, edition, Williams and Wilkins, Baltimore, PP. 467–473.
23. Jaman, O. 2009. Peat Soils Utilisation and the Performance of Crops on Peat Soils. Paper Presented during the Soils Course for Research Officers and Agriculture Officers at :union: YES Retreat, Lundu, Sarawak.
24. Joy, P. P. 2010. Benefits and Uses of Pineapple. Pineapple Research Station, Kerala Agricultural University, Vazhakulam-686 670, Muvattupuzha, Ernakulam District, Kerala, India.
25. Krauss, B. H. 1948. Anatomy of the Vegetative Organs of the Pineapple, Ananas comosus (L.) Merr. I. Introduction Organography, the Stem, and the Lateral Branch or Axillary Buds. Bot. Gaz., 110(2): 159-217.
26. Lu, X., Sun, D., Li, Y., Shi, W. and Sun, G. 2011. Pre- and Post-harvest Salicylic Acid Treatments Alleviate Internal Browning and Maintain Quality of Winter Pineapple Fruit. Sci. Hort., 130(1): 97–101.
27. Mahmood, T., Anwar, F., Abbas, M. and Saari, N. 2012. Effect of Maturity on Phenolics (Phenolic acids and Flavonoids) Profile of Strawberry Cultivars and Mulberry Species from Pakistan. Int. J. Mol. Sci., 13(4): 4591-607.
28. Medina, J. D. and Garcia, H. S. 2005. Pineapples. http://www.fao.org/es/ESC/en/20953/21038/index.html. http://www.fao.org/inpho/content/compend/text/ch33/AE614e01.html. Retrieved on: 26.3.2014
29. Miller, V. E. 1950. Physiological Studies of the Fruits of the Pineapple [Ananas comosus (L.) Merr.] with Special Reference to Physiological Breakdown. Plant Physiol., 26(1): 66-75.
30. Nadzirah, K. Z., Zainal, S., Noriham, A., Normah, I., Siti Roha, A. M. and Nadya, H. 2013. Physico-chemical Properties of Pineapple Variety N36 Harvested and Stored at Different Maturity Stages. Food Res., 20(1): 225-231.
31. Nagar, P. K. 1994. Effect of Some Ripening Retardants on Fruit Softening Enzymes of Kinnow Mandarin Fruits. Indian J. Plant Physi., 37(2): 122.
32. Nedamani, E. R., Mahoonak, A. S., Ghorbani, M. and Kashaninejad, M. 2014. Antioxidant Properties of Individual vs. Combined Extracts of Rosemary Leaves and Oak Fruit. J. Agr. Sci. Tech., 16: 1575-1586.
33. Nikolic, M. V. and Mojovic, L. 2007. Hydrolysis of Apple Pectin by the Coordinated Activity of Pectic Enzymes. Food Chem., 101(1): 1–9.
34. Okimoto, M. C. 1948. Anatomy and Histology of the Pineapple Inflorescence and Fruit. Bot. Gaz., 110(2): 217-231.
35. Ozga, J. A. and Reinecke, D. M. 2003. Hormonal Interactions in Fruit Development. J. Plant Growth Regul., 22(1): 73–81.
36. Prieto, P., Pineda, M. and Aguilar, M. 1999. Spectrophotometric Quantitation of Antioxidant Capacity through the Formation of a Phosphomolybdenum Complex: Specific Application to the Determination of Vitamin E. Anal. Biochem., 269(2): 337–341.
37. Purseglove, J. W. 1972. Tropical Crops. Monocotyledons. Longman, London, PP. 75-91.
38. Ranganna, S. 1977. Chapter 5: ascorbic acid, in: “Manual of Analysis of Fruit and Vegetable Products” (Ed.): S. Ranganna, Tata McGrawHill Publishing Company, New Dehli, pp. 94–96.
39. Rosnah, S., Wan Ramli, W., Mohd Sobri, T. and Osman, H., 2009. Physico-mechanical Properties of the Josaphine Pineapple Fruits. Pertanika J. Sci. Technol., 17(1): 117-123.
40. Sadler, G. D., Murphy, P. A. 2010. pH and titratable acidity, in: S.S. Nielsen (Ed.), Food Analysis, fourth ed., Springer, New York, pp. 231–233.
41. Salmanian, S., Mahonaak, A. R. S., Alami, M. and Ghorbani, M. 2014. Phenolic Content, Antiradical, Antioxidant, and Antibacterial Properties of Hawthorn (Crataegus elbursensis) Seed and Pulp Extract. J. Agr. Sci. Tech., 16: 343-354.
42. Sane, V. A., Sane, A. P. and Nath, P. 2007. Multiple forms of α-Expansin Genes are Expressed during Banana Fruit Ripening and Development. Postharvest Biol. Technol., 45(2): 184–192.
43. Sanewski, G. M. 1998. The Australian Pineapple Fresh Market Breeding Program. In: Abstracts of 3rd Intl. Pineapple Symposium, Department of Agriculture, 17-20 November, 1998, Pattaya, Thailand, 51 PP.
44. Sanewski, G. and Scott, C. 2000. The Australian pineapple Industry. Subhadrabandhu, S and Chairidchai P eds, International Society for Horticultural Science, Pattaya Thaiand, pp. 53-55.
45. Selvarajah, S., Bauchot, A. D. and John, P. 2001. Internal Browning in Cold-stored Pineapples is Suppressed by a Postharvest Application of 1-Methylcyclopropene. Postharvest Biol. Technol., 23(2): 167–170.
46. Singh, R., 1998. Fruits. National Book Trust of India, Green Park, New Delhi.
47. Vanoli, M., Eccher Zerbini, P., Grassi, M., Jacob, S., Rizzolo, A., Torricelli, A., Spinelli, L. and Cubeddu, R. 2007. Ethylene Production in Nectarine Fruit of Different Maturity as Measured by Time-resolved Reflectance Spectroscopy. Advances in Plant Ethylene Research. Proceedings of the 7th International Symposium on the Plant Hormone Ethylene, Dordrecht, Netherlands, PP. 219-221.
48. Verlent, I., Smout, C., Duvetter, T., Hendrickx, M. E. and van Loey, A. 2005. Effect of Temperature and Pressure on the Activity of Purified Tomato Polygalacturonase in the Presence of Pectins with Different Patterns of Methyl Esterification. Innov. Food Sci. Emerg. Tech., 6(3): 293–303.
49. Vilaplana, R., Valentines, M. C., Toivonen, P. and Larrigaudière, C. 2006. Antioxidant Potential and Peroxidative State of ‘Golden Smoothee’ Apples Treated with 1-Methylcyclopropene. J. Am. Soc. Hortic. Sci., 131(1): 104–109.
50. Vinson, E. L., Woods, F. M., Kemble, J. M., Perkins-Veazie, P., Davis, A. and Kessler, J. R. 2010. Use of External Indicators to Predict Maturity of Mini-watermelon Fruit. HortSci., 45(7): 1034-1037.
51. Wang, S. Y., Chen, C. T. and Wang, C. Y. 2009. The Influence of Light and Maturity on Fruit Quality and Flavonoid Content of Red Raspberries. Food Chem., 112(3): 676–684.
52. Wijesinghe, W. A. J. P. and Sarananda, K. H. 2002. Postharvest Quality of ‘Mauritius’ Pineapple and Reason for Reduced Quality. Int. J. Trop. Agric. Res. Ext., 5(1 and 2): 53-56.
53. Winsor, G. W., Davies, J. N. and Massey, D. M. 1962. Composition of Tomato Fruit. III. Juices from Whole Fruit and Locules at Different Stages of Ripeness. J. Sci. Food Agric., 13(2): 108-115.
54. Xu, G., Liu, D., Chen, J., Ye, X., Maa, Y. and Shi, J. 2008. Juice Components and Antioxidant Capacity of Citrus Varieties Cultivated in China. Food Chem., 106(2): 545-551.
55. Yamaki, Y. T. 1989. Organic Acids in the Juice of Citrus Fruits. J. Jpn. Soc. Hortic. Sci., 58(3): 587-594.