Influence of Substrate pH on Root Growth, Biomass and Leaf Mineral Contents of Grapevine Rootstocks Grown in Pots

Authors
Department of Viticulture and Enolgy Meranovo, Faculty of Agriculture and Life Sciences, University of Maribor, Hoče, Slovenia.
Abstract
The present study was carried out in order to test the effect of grapevine rootstocks root growth on biomass and leaf nutrition status in extreme soil conditions. Own rooted cuttings of rootstocks Fercal, Teleki Kober 5BB, Georgikon 28 and four new rootstock hybrids from the breeding program of Georgikon Faculty, Hungary (FB01, JB01, Zamor 17 and SZF10) were grown 3 months in pots. The 5 L pots were filled with a layer of gravel, high lime content Rendzina soil (pH 8.54) topped with a layer of peat-soil mixture (pH 4.94). The biomass production, shoot, leaf and root development largely depended on the rootstocks genotype. The differences among studied rootstocks were significant under low pH. Correlation was found between the root dry weight and the aboveground parts. The ratio between them was strongly influenced by rootstocks genotype. Rootstocks had strong influence on leaf nutrient status.

Keywords


1. Bavaresco, L., Fraschini, P. and Perino, A. 1993. Effect of the Rootstock on the Occurrence of Lime-Induced Chlorosis of Potted Vitis vinifera L. cv. Pinot Blanc. Plant Soil, 157: 305–311.
2. Bavaresco, L., Giachino, E. and Pezutto, S. 2003. Grapevine Rootstocks Effects on Lime-Induced Chlorosis, Nutrient Uptake, and Source-sink Relationships. J. Plant Nutr., 26: 1451–1465.
3. Brancadoro, L., Valenti, L., Reina, A. and Scienza A. 1994. Potassium Content of Grapevine during the Vegetative Period: The Role of the Rootstock. J. Plant Nutr., 17: 2165-2175.
4. Fisarakis, I., Nikolaou, N., Tsikalas P., Therios I. and Stavrakas, D. 2005. Effect of Salinity and Rootstock on Concentration of Potassium, Calcium, Magnesium, Phosphorus, and Nitrate–nitrogen in Thompson Seedless Grapevine. J. Plant Nutr., 27: 2117-2134.
5. Ghaderi, N., Talaie, A. R., Ebadi, A. and Lessani, H. 2011. The Physiological Response of Three Iranian Grape Cultivars to Progressive Drought Stress. J. Agr. Sci. Tech., 13: 601-610.
6. Galet, P., 1990. Cepages et Vignobles de France. Tome II. Ampblographie Francaise. 2nd Edition, Imprimerie Charles Dehan, Montpellier, France.
7. Garcia, M., Gallego, P., Daverede, C. and Ibrahim H. 2001. Effect of Three Rootstocks on Grapevine (Vitis vinifera l.) cv. Negrette, Grown Hydroponically. I. Potassium, Calcium and Magnesium Nutrition. S. Afr. J. Enol. Vitic., 22: 101-103.
8. Gruben, B. and Kosegarten, H. 2002. Depressed Growth of Non-chlorotic Vine Grown in Calcareous Soil in an Iron Deficiency Symptom Prior Leaf Chlorosis. J. Plant Nutr., Soil Sc. 165: 111–117.
9. Kocsis, L., Granett, J. and Walker, M. A. 1999. Grape Phylloxera Strains with Elevated Host Utilization of Vitis berlandieri×V. riparia hybrids. Am. J. Enol. Viticult., 50: 101-106.
10. Marguerit, E., Brendel, O., Lebon, E., Van Leeuwen, C. and Ollat, N. 2012. Rootstock Control of Scion Transpiration and Its Acclimation to Water Deficit Are Controlled by Different Genes. New Phytol., 194: 416-429.
11. Morlat, R. and Jacquet, A. 1993. The Soil Effects on the Grapevine Root System in Several Vineyards of the Loire Valley (France). Vitis, 32: 35-42.
12. Paranychianakis, N. V., Nikolantonakis, M., Spanakis, Y. and Angelakis, A. N. 2006. The Effect of Recycled Water on the Nutrient Status of Soultanina Grapevines Grafted on Different Rootstocks. Agr. Water Man., 81: 185–198.
13. Patil, S. G., Karkamkar, S. P. and Deshmukh, M. R. 2005. Screening of Grape Varieties for Their Drought Tolerance. Indian J. Plant Physi., 10: 176–178.
14. Pavloušek, P. 2009. Evaluation of Lime-induced Chlorosis Tolerance in New Rootstock Hybrids of Grapevine. Europ. J. Hort. Sci., 74: 35–41.
15. Pavloušek, P. 2011. Evaluation of Drought Tolerance of New Grapevine Rootstock Hybrids. J. Environ. Biol., 32: 543–549.
16. Pellegrino, A., Lebon, E., Simmoneau, T. and Wery, J. 2005. Towards a Simple Indicator of Water Stress in Grapevine (Vitis vinifera L.) Based on the Differential Sensitivities of Vegetative Growth Component. Aust. J. Grape Wine R., 11: 306–315.
17. Pire, R., Pereira, A., Diez, J. and Fereres, E. 2007. Drought Tolerance Assessment of a Venezuelan Grape Rootstock and Possible Conditions Mechanism. Agrociencia, 47: 435–446.
18. Poczai, P., Hyvönen, J., Taller, J., Jahnke, G. and Kocsis, L. 2013. Phylogenetic Analyses of Teleki Grapevine Rootstocks Using three Chloroplast DNA Markers. Plant Mol. Biol. Rep., 31: 371-386.
19. Pouget, R. and Ottenwaelter, M. 1978. Etude de L’Adaptation de Nouvelles Variétés de Porte-greffe à des Sols Chlorosants. Connaissance Vigne Vin., 12: 167-175.
20. Pulko, B., Vršič, S. and Valdhuber, J. 2012. Influence of Various Rootstocks on the Yield and Grape Composition of Sauvignon Blanc. Czech J. Food Sci., 30: 467-473.
21. Ruhl, E. H. 1989. Uptake and Distribution of Potassium by Grapevine Rootstocks and Its Implication for Grape Juice pH of Scion Varieties. Aust. J. Exp. Agr., 29: 707–712.
22. Smart, D. R., Kocsis, L., Walker, M. A. and Stockert, C. 2002. Dormant Buds and Adventitious Root Formation by Vitis and Other Woody Plants. J. Plant Growth Reg., 21: 296–314.
23. Vršič, S. Pulko, B. and Kocsis, L. 2015. Factors Influencing Grafting Success and Compatibility of Grape Rootstocks. Sci. Hortic., 181: 168-173.
24. Vršič, S., Šuštar, V., Pulko, B. and Kraner-Šumenjak, T. 2014. Trends in Climate Parameters Affecting Winegrape Ripening in Northeastern Slovenia. Clim. Res., 58: 257-266.