Influence of AM Fungi, Glomus mosseae and Glomus intraradices on Chickpea Growth and Root-Rot Disease Caused by Fusarium solani f. sp. pisi under Greenhouse Conditions

Authors
1 Department of Plant Protection, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Islamic Republic of Iran.
2 Horticultural Science Research Institute, Pistachio Research Center, Agricultural Research, Education and Extension Organization (AREEO), Rafsanjan, Islamic Republic of Iran.
Abstract
In the present study, the effect of two species of AMF, Glomus mosseae and Glomus intraradices, alone and in combination, was evaluated on the growth criteria, chlorophyll content, and root rot disease caused by Fusarium solani f. sp. pisi, on chickpea (Cicer arietinum L.) under greenhouse conditions. Chickpea seeds were sown into pots containing 100 g of AMF inoculum (more than 1,000 propagules g-1) and, after four weeks, root of seedlings were inoculated with conidia suspension (106 conidia mL-1) of F. solani f. sp. pisi. Six weeks after pathogen inoculation, shoot and root dry weight, shoot height, chlorophyll content and mycorrhizal and Fusarium colonization were measured. Results showed that inoculation of G. mosseae was more effective than G. intraradices and dual inoculations (G. intraradices+G. mosseae) on the above criteria. Inoculation of F. solani f. sp. pisi without AMF treatments reduced shoot height, shoot and root dry weight, and chlorophyll content significantly compared with the control. In the presence of AMF, root colonization by F. solani f. sp. pisi and disease severity decreased and individual inoculation with G. mosseae was more effective than the other treatments. Inoculation of G. mosseae and G. intraradices caused a significant increase in plant height, shoot and root dry weight, and chlorophyll content of pathogen-inoculated plants compared with inoculated chickpea plants with F. solani f. sp. pisi. Based on the results, application of G. mosseae was found to be the best for reducing the root rot disease and improving plant growth parameters of chickpea, followed by G. intraradices and dual inoculations.

Keywords


1. Abdel-Fattah, G. M. and Shabana, Y. M. 2002. Efficacy of the Arbuscular Mycorrhizal Fungus Glomus clarum in Protection of Cowpea Plants against Root Rot Pathogen Rhizoctonia solani. J. Plant Dis. Prot., 109: 207–215.
2. Abohatem, M., Chakrafi, F., Jaiti, F., Dihazi, A. and Baaziz, M. 2011. Arbuscular Mycorrhizal Fungi Limit Incidence of Fusarium oxysporum f. sp. albedinis on Date Palm Seedlings by Increasing Nutrient Contents, Total Phenols and Peroxidase Activities. Open Hortic. J., 4: 10–16.
3. Achor, D. S., Nemec, S. and Baker, R. A. 1993. Effects of Fusarium solani, Naphthazarin Toxins on the Cytology and Ultrastructure of Rough Lemon Seedlings. Mycopathologia, 123: 117–126.
4. Akhtar, M. S. and Siddiqui, Z. A. 2008. Arbuscular Mycorrhizal Fungi as Potential Bio-protectants Against Plant Pathogens. In: ″Mycorrhizae: Sustainable Agriculture and Forestry″, (Eds.): Siddiqui, Z. A., Akhtar, M. S. and Futai, K.. Springer Netherlands, Dordrecht, The Netherlands.
5. Akhtar, M. S. and Siddiqui, Z. A. 2010. Effects of AM Fungi on the Plant Growth and Root-Rot Disease of Chickpea. American-Eurasian J. Agric. Environ. Sci., 8(5): 544–549.
6. Alam, S. S., Sakamoto, K. and Inubushi, K. 2011. Biocontrol Efficiency of Fusarium Wilt Disease by Root Colonizing Fungus Penicillium sp. Soil Sci. Plant Nutr., 57: 204–212.
7. Alwathnani, H. A. and Perveen, K. 2012. Biological Control of Fusarium Wilt of Tomato by Antagonistic and Cyanobacteria. Afr. J. Biotechnol., 11: 1100–1105.
8. Amini, J. and Sidovich, D. F. 2010. The Effects of Fungicides on Fusarium oxysporum f. sp. lycopersici Associated with Fusarium Wilt of Tomato. J. Plant Protec. Res., 50: 172–178.
9. Apple, M. E. 2010. Aspects of Mycorrhizae in Desert Plants. Desert Plants, 1: 121–34.
10. Arabi, M. I. E., Kanacri, S., Ayoubi, Z. and Jawhar, M. 2013. Mycorrhizal Application as a Biocontrol Agent against Common Root Rot of Barley. Res. Biotechnol., 4(4): 7–12.
11. Bååth, E. and Hayman, D. S. 1983. Plant Growth Responses to Vesicular-Arbuscular Mycorrhizae XIV. Interactions with Verticillium Wilt on Tomato Plants. New Phytol., 95: 419–426.
12. Banuelos, J., Alarcón, A., Larsen, J., Cruz-Sánchez, S. and Trejo, D. 2014. Interactions between Arbuscular Mycorrhizal Fungi and Meloidogyne incognita in the Ornamental Plant Impatiens balsamina. J. Soil Sci. Plant Nut., 14(1): 63–74.
13. Behboudian, M. H., Walker, R. R. and Torokfalvay, E. 1986. Effect of Water Stress and Salinity on Photosynthesis of Pistachio. Sci. Hort., 29: 251-261.
14. Borowicz, V. A. 2001. Do Arbuscular Mycorrhizal Fungi Alter Plant-Pathogen Relations? Ecol., 82: 3057–3068.
15. Brundrett, M. C. 2002. Coevolution of Roots and Mycorrhizas of Land Plants. New Phytol., 154: 275–304.
16. Caron, M., Fortin, J. A. and Richard, C. 1986. Effect of Glomus intraradices on Infection by Fusarium oxysporum f.sp. radicis-lycopersici in Tomatoes Over a 12-Week Period. Can. J. Bot., 64: 552–556.
17. Ciccarese, F., Longo, O., Paciolla, C., Schiavone, D. and Morone, F. I. 2005. Effect of Arbuscular Mycorrhizal Fungi on Verticillium Wilt of Artichoke. J. Plant Pathol., 87: 291.
18. Colla, G., Rouphael, Y., Cardarelli, M. T., Tullio, M., Rivera, C. M. and Rea, E. 2008. Alleviation of Salt Stress by Arbuscular Mycorrhizal in Zucchini Plants Grown at Low and High Phosphorus Concentration. Biol. Fert. Soil., 44: 501–509.
19. Cordier, C., Pozo, M. J. Barea, J. M., Gianinazzi, S. and Gianinazzi-Pearson, V. 1998. Cell Defense Responses Associated with Localized and Systemic Resistance to Phytophthora Induced in Tomato by An Arbuscular Mycorrhizal Fungus. Mol. Plant Microbe In., 11: 1017–1028.
20. Dar, H., Zargar, G. M. Y. and Beigh, G. M. 1997. Biocontrol of Fusarium Root Rot in the Common Bean (Phaseolus vulagaris L.) by Using Symbiotic Glomus mosseae and Rhizobium leguminosarum. Microb. Ecol., 34: 74–80.
21. Doley, K. and. Jite, P. K. 2012. Effect of Arbuscular Mycorrhizal Fungi on Growth of Groundnut and Disease Caused by Macrophomina phaseolina. J. Exp. Sci., 3(9): 46–50.
22. Earanna, N. 2001. VA Mycorrhizal Association in Medicinal Plants of Southeastern Dry Zone of Karnataka and Response of Phyllanthus amarus and Withania somnifera to Inoculation with VAM Fungi and Plant Growth Promoting Rhizomicroorganisms. PhD. Thesis, The University of Agricultural Sciences, Bangalore.
23. El-Mohamedy, R. S. R. 2012. Biological Control of Pythium Root Rot of Broccoli Plants under Greenhouse Conditions. J. Agri. Technol., 8: 1017–1028.
24. Filion, M., St-Arnaud, M. and Jabaji-Hare, H. 2003. Quantification of Fusarium solani f. sp. phaseoli in Mycorrhizal Bean Plants and Surrounding Mycorrhizosphere Soil Using Real-time Polymerase Chain Reaction and Direct Isolation on Selective Media. Phytopathol., 93: 229–235.
25. Gange, A. C., Brown, V. K. and Aplin, D. M. 2003. Multitrophic Links between Arbuscular Mycorrhizal Fungi and Insect Parasitoids. Ecol. Lett., 6: 1051– 1055.
26. Giovannetti, M., Tosi, L., Della Torre, G. and Zazzerini, A. 1991. Histological, Physiological and Biochemical Interactions between Vesicular-arbuscular Mycorrhizae and Thielaviopsis basicola in Tobacco Plants. J. Phytopathol., 131: 265–274.
27. Gracy, L. S. and Bagyaraj, D. J. 2005. Influence of Different AM Fungi on Growth, Nutrition and Forskolin Content of Coleus Forskohlii. Mycol. Res., 109: 795–798.
28. Harrier, L. A. and Watson, C. A. 2004. The Potential Role of Arbuscular Mycorrhizal (AM) Fungi in Bio-protection of Plants Against Soil-borne Pathogens in Organic and/or Other Sustainable Farming Systems. Pest Manage. Sci., 60: 149–157.
29. Honnareddy, N. and Dubey, S. C. 2006. Pathogenic and Molecular Characterization of Indian Isolates of Fusarium oxysporum f.sp. ciceri Causing Chickpea Wilt. Curr. Sci., 91(5): 661–666.
30. Jaiti, F., Meddich, A. and El Hadrami, I. 2007. Effectiveness of Arbuscular Mycorrhizal Fungi in the Protection of Date Palm (Phoenix dactylifera L.) Against Bayoud Disease. Physiol. Mol. Plant Pathol., 71(4-6): 166–73.
31. Johansson, J. F., Paul, L. R. and Finlay, R. D. 2004. Microbial Interactions in the Mycorrhizosphere and the Significance for Sustainable Agriculture. FEMS Microbiol. Ecol., 48: 1–13.
32. Johansson, P. M., Johnsson, L. and Gerhardson, B. 2003. Suppression of Wheat-Seedling Diseases Caused by Fusarium culmorum and Microdochium nivale Using Bacterial Seed Treatment. Plant Pathol., 52: 219–227.
33. Karagiannidis, N., Bletsos, F. and Stavropoulos, N. 2002. Effect of Verticillium Wilt (Verticillium dahliae Kleb.) and Mycorrhiza (Glomus mosseae) on Root Colonization, Growth and Nutrient Uptake in Tomato and Eggplant Seedlings. Sci. Hortic., 94: 145–156.
34. Khan, H., Meghvansi, M. K., Panwar, V., Gogoi, H. K. and Singh, L. 2010. Arbuscular Mycorrhizal Fungi-Induced Signaling in Plant Defense against Phytopathogens, J. Phytol., 2(7): 53-69.
35. Kirk, J. T. O. 1968. Studies on the Dependence of Chlorophyll Synthesis on Protein Synthesis in Euglena gracilis Together with A Nomogram for Determination of Chlorophyll Concentration. Planta, 78: 200–207.
36. Kjøller, R. and Rosendahl, S. 1996. The Presence of the Arbuscular Mycorrhizal Fungus Glomus intraradices Influences Enzymatic Activities of the Root Pathogen Aphanomyces euteiches in Pea Roots. Mycorrhiza, 6(6): 487–491.
37. Klironomos, J. N. 2003. Variation in Plant Response to Native and Exotic Arbuscular Mycorrhizal Fungi. Ecol., 84: 2292–2301.
38. Kormanic, P. P. and Mcgraw, A. C. 1982. Quantification of Vesicular-Arbuscular Mycorrhiza In Plant Roots. In: ″Methods and Principles of Mycorrhizal Research″, (Ed.): Schenck, N. C.. APS Press, St. Paul, pp. 37–45.
39. Li, A. R., Smith, S. E., Smith, F. A. and Guan, K. Y. 2012. Inoculation with Arbuscular Mycorrhizal Fungi Suppresses Initiation of Haustoria in the Root Hemiparasite Pedicularis tricolor. Ann. Bot., 109: 1075–1080.
40. Linderman, R. G. 1994. Role of VAM Fungi in Biocontrol. In: ″Mycorrhizae and Plant Health″, (Eds.): Pfleger, F. L. and Linderman, R. G.. APS, St Paul, PP. 1–26.
41. Liu, R. J and Luo, X. S 1988. Effects of Vesiculararbuscular Mycorrhizas on the Growth, Mineral Nutrition and Water Relations of Cherry (Cerasus psedocerasus). J. Lai-Yang Agri. College, 5: 6–13.
42. Linderman, R. G. 2000. Effects of Mycorrhizas on Plant Tolerance to Diseases. In: ″Arbuscular Mycorrhizas: Physiology and Function″, (Eds.): Kapulnik, Y. and Douds, D. D. J.. Dordrecht, Kluwer Academic Publishers, The Netherlands, PP. 345–365.
43. Liu, R. J. 1989. Effects of Vesicular-arbuscular Mycorrhizas and Phosphorous on Water Status and Growth of Malus hupehensis. J. Plant Nutr., 12: 997–1019.
44. López-Ráez, J. A., Verhage, A., Fernández, I., Garcia, J. M., Azcon-Aguilar, C., Flors, V. and Pozo, M. J. 2010. Hormonal and Transcriptional Profiles Highlight Common and Differential Host Responses to Arbuscular Mycorrhizal Fungi and the Regulation of the Oxylipin Pathway. J. Exp. Bot., 61: 2589–601.
45. Louarn, J., Carbonne, F., Delavault, P., Becard, G. and Rochange, S. 2012. Reduced Germination of Orobanche cumana Seeds in the Presence of Arbuscular Mycorrhizal Fungi or Their Exudates. Plos ONE, 7(11): e49273.
46. Manila, S. and Nelson, R. 2014. Biochemical Changes Induced in Tomato As A Result of Arbuscular Mycorrhizal Fungal Colonization and Tomato Wilt Pathogen Infection. Asian J. Plant Sci. Res., 4(1): 62-68.
47. Martínez-Medina, A., Roldá, A., Albacete, A. and Pascual, J. A. 2011. The Interaction with Arbuscular Mycorrhizal Fungi or Trichoderma harzianum Alters the Shoot Hormonal Profile in Melon Plants. Phytochem., 72: 223-9.
48. Matloob, A. A. H. and Juber, K. S. 2013. Biological Control of Bean Root Rot Disease Caused by Rhizoctonia solani Under Greenhouse and Field Conditions. Agric. Biol. J. N. Am., 4(5): 512–519.
49. Matsubara, Y., Ohba, N. and Fukui, H. 2001. Effects of Arbuscular Mycorrhizal Fungus Infection on the Incidence of Fusarium Root Rot in Asparagus Seedlings. J. Jap. Soc. Hortic. Sci., 70: 202–206.
50. Matsubara, Y., Ohba, N. and Fukui, H. 2001. Effects of Arbuscular Mycorrhizal Fungus Infection on the Incidence of Fusarium Root Rot in Asparagus Seedlings. J. Jap. Soc. Hortic. Sci., 70: 202–206.
51. Matsubara, Y., Tamura, H. and Harada, T. 1995. Growth Enhancement and Verticillium Wilt Control by Vesicular–arbuscular Mycorrhizal Fungus Inoculation in Eggplant. J. Jap. Soc. Hortic. Sci., 64: 555–561.
52. Mohammadi, H. and Banihashemi, Z. 2006. Distribution, Pathogenicity and Survival of Fusarium sp. the Causal Agents of Chickpea Wilt and Root Rot in the Fars Province of Iran. Iran. J. Plant Pathol., 41: 687–708.
53. Nisha, M. C and Rajeshkumar. S. 2010. Effect of Arbuscular Mycorrhizal Fungi on Growth and Nutrition of Wedilia chinensis (Osbeck) Merril. Indian J. Sci. Technol., 3(6): 676–678.
54. Rajan, S. K, Reddy, B. J. D. and Bagyaraj, D. J. 2000. Screening of Arbuscular Fungi for Their Symbiotic Efficiency with Tectona grandis. Forest Ecol. Manage., 126: 91–95.
55. Sampo, S., Massa, N., Cantamessa, S., D., Agostino, U., Bosco, D., Marzachi, C. and Berta, G. 2012. Effects of Two AM Fungi on Phytoplasma Infection in the Model Plant Chrysanthemum carinatum. Agric. Food Sci., 21: 39–51.
56. SchüBler, A., Shwarzott, D. and Walker, C. 2001. A New Fungal Phylum, the Glomeromycota: Phylogeny and Evolution. Mycol. Res., 105: 1413–1421.
57. Shen, W. S., Lin, X. G., Gao, N., Zhang, H. Y., Yin, R., Shi, W. M. and Duan, Z. Q. 2008. Land Use Intensification Affects Soil Microbial Populations, Functional Diversity and Related Suppressiveness of Cucumber Fusarium Wilt in China’s Yangtze River Delta. Plant Soil, 306: 117–127.
58. Slezack, S., Dumas Gaudot, E., Rosendahl, S., Kjøller, R., Paynot, M., Negrel, J. and Gianinazzi, S. 1999. Endoproteolytic Activities in Pea Roots Inoculated with the Arbuscular Mycorrhizal Fungus Glomus mosseae and/or Aphanomyces euteiches in Relation to Bioprotection. New Phytol., 142: 517–529.
59. Srivastava, A. K., Singh, S. and Marathe, R. A. 2002. Organic Citrus, Soil Fertility and Plant Nutrition. J. Sustain. Agr., 19: 5–29.
60. St-Arnaud, M., Hamel, C. and Fortin, J. A. 1994. Inhibition of Pythium ultimum in Roots and Growth Substrate of Mycorrhizal Tagetes patula Colonized with Glomus intraradices. Can. J. Plant Pathol., 16: 187–194.
61. Tanwar, A., Aggarwala, A. and Panwar, V. 2013. Arbuscular Mycorrhizal Fungi and Trichoderma viride Mediated Fusarium Wilt Control in Tomato. Biocontrol. Sci. Techn., 23: 485–498.
62. Thygesen, K., Larsen, J. and Bodker, L. 2004. Arbuscular Mycorrhizal Fungi Reduce Development of Pea Root-Rot Caused by Aphanomyces euteiches Using Oospores as Pathogen Inoculum. Eur. J. Plant Pathol., 110: 411–419.
63. Trotta, A., Varese, G. C., Gnavi, E., Fusconi, A., Sampo, S. and Berta, G. 1996. Interactions between the Soil Borne Root Pathogen Phytophthora nicotianae var. parasitica and the Arbuscular Mycorrhizal Fungus Glomus mosseae in Tomato Plants. Plant Soil, 185: 199–209.
64. Tsipouridis, C., Thomidis, T., Elena, K. and Isaakidis, A. 2005. Effect of Peach Cultivars, Rootstocks and Phytophthora on Iron Vhlorosis. World J. Agric. Sci., 1: 137–142.
65. Vannette, R. L. and Hunter, M. D. 2009. Mycorrhizal Fungi as Mediators of Defence against Insect Pests in Agricultural Systems. Agric. For. Entomol., 11: 351–358.
66. Vierheilig, H., Schweiger, P. Brundrett, M. 2005. An Overview of Methods for the Detection and Observation of Arbuscular Mycorrhizal Fungi in Roots. Physiol. Plant., 125: 393-404.
67. Westerlund, F. V. J., Campbell, R. N. and Kimble, K. A. 1974. Fungal Root Rots and Wilt of Chickpea in California. Phytopathol., 64: 432–436.
68. Whipps, J. M. 2004. Prospects and Limitations for Mycorrhizas in Biocontrol of Root Pathogens. Can. J. Bot., 82: 1198–1227.