Estimating Almond Crop Coefficients and Physiological Response to Water Stress in Semiarid Environments (SW Spain)

Authors
Institute of Agricultural and Fisheries Research and Training (IFAPA) Centro “Las Torres-Tomejil”. Crta. Sevilla-Cazalla, km. 12,2. 41200 Alcalá del Río, Sevilla, Spain.
Abstract
Water is the most limiting factor in irrigated agriculture, mainly in Mediterranean environments, as in the case of southwest Spain. In this area, almond is one of the most valuable crops due to its high drought tolerance. This work examines the crop coefficients (KC) based on four drainage lysimeters installed in an experimental young almond orchard. Complementary, two deficit-irrigation treatments were tested: (1) moderate deficit-irrigation (MDI), which received 100% of the crop evapotranspiration (ETC) during the irrigation period, except during the kernel-filling stage and pre-harvest, when irrigation was 50% of ETC; and (2) severe deficit irrigation (SDI), in which water was applied according to the values of leaf-water potential at midday (Ψleaf), this being maintained at between -1.6 and -2.0 MPa. The crop’s physiological response to water stress was monitored throughout the study period by assessing the leaf-water potential (Ψleaf) and canopy temperature (TC) dynamics. The KC values changed from 0.4 at the beginning of irrigation period to a maximum of 1.1 during the maximum evaporative demand period. From this stage on, the Kc gradually decreased to 0.4 at the end of the season. In physiological terms, both Ψleaf and TC showed a temporal evolution according to defined irrigation strategies. Moreover, significant relationship (r2 = 0.63, P<0.05) was obtained between Yleaf and the difference between leaf and air temperature values (AT). the difference between leaf and air temperature values; evidencing the feasibility of using TC for water-stress management. Thus, the findings highlight the importance of local KC to optimize water use and irrigation scheduling in almond orchards.

Keywords


1. Abrisqueta, I., Abrisqueta, J. M., Tapia, L. M., Munguía, J. P., Conejero, W., Vera, J. and Ruiz-Sánchez, M. C. 2013. Basal Crop Coefficients for Early-Season Peach Trees. Agric. Water Manage., 121:158-163.
2. Allen, R. G., Pereira, L. S., Raes, D. and Smith, M. 1998. Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements. FAO Irrigation and Drainage Paper 56, FAO, Rome, Italy.
3. Allen, R. G., Pereira, L. S., Smith, M., Raes, D. and Wright, J. L. 2005. The FAO-56 Dual Crop Coefficient Method for Predicting Evaporation from Soil and Application Extensions. J. Irrig. Drain. Eng., 131: 2–13.
4. Annandale, J. G. and Stockle, C. O. 1994. Fluctuation of Crop Evapotranspiration Coefficients with Weather: A Sensitive Analysis. Irrig. Sci., 15:1 – 7.
5. Ayars J. E., Johnson, R. S., Phene, C. J., Trout, T. J., Clark, D. A. and Mead, R. M. 2003. Water Use by Drip-irrigated Late-season Peaches, Irrig. Sci., 22:187-194.
6. Doorenbos J., and Pruitt, W. O. 1977. Guidelines for Predicting Crop Water Requirements. Irrigation and Drainage Paper No. 24 (Rev.), FAO-ONU, Rome, 144 PP.
7. Costa, J. M., Ortuño, M. F., Lopes, C. M. and Chaves, M. M. 2012. Grapevine Varieties Exhibiting Differences in Stomatal Response to Water Deficit. Funct. Plant Biol., 39:179-189.
8. Costa, J. M., Grant, O. M. and Chaves, M. M. 2013. Thernography to Explore Plant-Environment Interactions. J. Exp. Bot. Online published. 64:3937-3949.
9. Egea, G., González-Real, M. M., Baille, A., Nortes, P. A., Sánchez-Bel, P. and Domingo, R. 2009. The Effects of Contrasted Deficit Irrigation Strategies on the Fruit Growth and Kernel Quality of Mayure Almond Trees. Agric. Water Manage., 96: 1605-1614.
10. Egea, G., Nortes, P. A., González-Real, M. M., Baille, A. and Domingo, R. 2010. Agronomic Response and Water Productivity of Almond Trees under Contrasted Deficit Irrigation Regimes. Agric. Water Manage. 97:1710 -181.
11. FAOSTAT. 2013. Food and Agriculture Organization of the United Nations. Available in: http://faostat.fao.org/. [Accessed: November 2013].
12. Fulton, A., Buchner, R., Olson, B., Schwankl, L. J., Gilles, C., Bertagna, N., Walton, J. and Shackel, K. A. 2001. Rapid Equilibration of Leaf and Stem Water Potential under Field Conditions in Almonds, Walnuts and Prunes. HortTech., 11: 609-615.
13. García-Tejero, I. F., Durán-Zuazo, V. H., Vélez, L. M., Hernández, A., Salguero, A. and Muriel-Fernández, J. L. 2011a. Improving Almond Productivity under Deficit Irrigation in Semiarid Zones. Open Agric. J., 5: 56 – 62.
14. García-Tejero, I. F., Durán-Zuazo, V. H., Muriel-Fernández, J. L. and Jiménez-Bocanegra, J. A. 2011b. Linking Canopy Temperature and Trunk Diameter Fluctuations with Other Physiological Water Status Tools for Water Stress Management in Citrus Orchards. Funct. Plant Biol., 38:106–117.
15. García-Tejero, I. F., Durán-Zuazo, V. H., Arriaga, J., Hernández, A., Vélez, L. M. and Muriel-Fernández, J. L. 2012. Approach to Assess Infrared Thermal Imaging of Almond Trees under Water-stress Conditions. Fruit., 67: 463 – 474.
16. Girona, J. 2006. La Respuesta del Cultivo del Almendro al Riego. Vida Rural, 234:12-16
17. Goldhamer, D. A., Viveros, M. and Salinas. 2006. Regulated Deficit Irrigation in Almonds: Effects of Variations in Applied Water and Stress Timing on Yield and Yield Components. Irrig. Sci., 24:101 – 114.
18. Goldhamer, D. A. and Fereres, E., 2004. Irrigation Scheduling of Almond Trees with Trunk Diameter Sensors. Irrig. Sci., 23:11–19.
19. Hutmacher, R. B., Nightingale, H. I., Rolston., D. E., Biggar, J. W., Dale, F., Vails, S. S. and Peters, D. 1994. Growth and Yield Responses of Almond (Prunus amygdalus) to Trickle Irrigation. Irrig. Sci., 14:117 – 126.
20. Jones, H. G. 1992. Plants and Microclimate. 2nd Edition, Cambridge University Press, Cambridge, UK.
21. Jones, H. G., Aikman, D. and McBurney, T. A. 1997. Improvements to Infrared Thermography for Irrigation Scheduling in Humid Climates. Acta Hort., 449: 259-266.
22. Jones, H. G., Serraj, R., Loveys, B. R., Xiong, L., Wheaton, A. and Price, A. H. 2009. Thermal Infrared Imaging of Crop Canopies for the Remote Diagnosis and Quantification of Plant Responses to Water Stress in the Field. Funct. Plant Biol., 36:978–989.
23. Jones, H. G., Stoll, M., Santos, T., de Sousa C., Chaves, M. M., and Grant, O. M. 2002. Use of Infra-red Thermography for Monitoring Stomatal Closure in the field: Application to the Grapevine. J. Exp. Bot. 53:2249-2260.
24. Katerji N. and Rana, G. 2011. Crop Reference Evapotranspiration: A Discussion of the Concept, Analysis of the Process and Validation. Water Res. Manage., 25:1581-1600
25. Lovelli S., Pizza, S., Cponio, T., Rivelli, A. R. and Perniola, M. 2005. Lysimetric Determination of Muskmelon Crop Coefficients Cultivated under Plastic Mulches, Agric. Water Manage., 72:147-159.
26. Pou, A., Diago, M. P., Medrano, H., Baluja, J., Tardaguila, J. 2014. Validation of Thermal Indices for Water Stress Status Identification in Grapevine. Agric. Water Manage., 134: 60-72.
27. Romero, P., García, J. and Botía, P. 2006. Cost-benefit Analysis of a Regulated Deficit-Irrigated Almond Orchard under Subsurface Drip Irrigation Conditions in Southeastern Spain. Irrig. Sci. 24:175 – 184.
28. Romero, P. and Botía P. 2006. Daily and Seasonal Patterns of Leaf Water Relations and Gas Exchange of Regulated Deficit-irrigated Almond Trees under Semiarid Conditions. Environ. Exp. Bot., 56:158-173.
29. Sepulcre, C. G., Zarco, T. P. J., Jiménez, M. J. C., Sobrino, J. A., de Miguel, E. and Villalobos, F. J. 2006. Detection of Water Stress in an Olive Orchard with Thermal Remote Sensing Imagery, Agric. Forest Meteorol., 136:31–44.
30. Soil Survey Staff. 2006. Keys to Soil Taxonomy. 10th Edition, USDA-Natural Resources Conservation Service, Washington DC, USA.
31. Stanghellini, C., Bosma, A. H., Gabriels, P. C. J. and Werkoven, C. 1990. The Water Consumption of Agricultural Crops: How Crop Coefficient Are Affected by Crop Geometry and Microclimate. Acta Hort., 278: 509–516.
32. Tarantino, E. and Onofrii, M. 1991. Determinazione dei Coefficienti Colturali Mediante Lisimetri. Bonifica, 7: 119–136. (in Italian)
33. Testi L., Villalobos, F. J., Orgaz, F. 2004. Evapotranspiration of a young irrigated olive orchard in southern Spain, Agric. Water Manage., 121:1-18.
34. Williams L. E., Phene, C. J., Grimes, D. W., Trout, T. J. 2003, Water use of mature Thomson Seedless grapevines in California, Irrig Sci, 22: 11-18.
35. Wright, J. L. 1982. New evapotranspiration crop coefficients, Journal of Irrigation Drainage Div. ASCE 108: 57–74.