1. AAS (Abstract of Agricultural Statistics). 2012. Directorate Agricultural Information. National Department of Agriculture, Pretoria.
2. Abbass, H. A., Sarker, R. and Newton, C. 2001. PDE: A Pareto-frontier Differential Evolution Approach for Multi-objective Optimization Problems. In IEEE Congress on Evolutionary Computation (CEC’2001), 2: 971-978.
3. Adeyemo, J., Bux, F. and Otieno, F. 2010. Differential Evolution Algorithm for Crop Planning: Single and Multi-objective Optimization Model. Int. J. Phys. Sci., 5(10): 1592-1599.
4. Adeyemo, J. and Otieno, F. 2009. Optimizing Planting Areas Using Differential Evolution (DE) and Linear Programming (LP). Int. J. Phys. Sci., 4: 212-220.
5. Brunelli, R. and von Lücken, C. 2009. Optimal Crops Selection Using Multiobjective Evolutionary Algorithms. AI Magazine, 30: 96.
6. Chetty, S. and Adewumi, A. 2014. Comparison of Swarm Intelligence Meta-heuristics for the Annual Crop Planning Problem. IEEE Transactions on Evolutionary Computation, 18: 258–268.
7. Deb, K. 2001. Multi-objective optimization using evolutionary algorithms, John Wiley & Sons, Inc., New York, NY, PP 13-46.
8. Deb, K. and Jain, S. 2002. Running Performance Metrics for Evolutionary Multi-objective Optimizations. In Proceedings of the Fourth Asia-Pacific Conference on Simulated Evolution and Learning (SEAL'02), Singapore, PP. 13-20
9. Deb, K. and Tiwari, S. 2005. Omni-optimizer: A Procedure for Single and Multi-objective Optimization. In Proceedings of Evolutionary Multi-Criterion Optimization, Springer, PP. 47-61
10. Detlefsen, N. and Jensen, A. L. 2007. Modelling Optimal Crop Sequences Using Network Flows. Agricultural Systems, 94: 566-572.
11. Dumitrescu, I. and Stützle, T. 2003. Combinations of Local Search and Exact Algorithms. In: "Applications of Evolutionary Computing". Springer, Berlin Heidelberg, PP. 211-223.
12. Einstein, A. 2012. Generalized Differential Evolution. Saku Kukkonen, 51 PP.
13. Francisco, S. R. and Ali, M. 2006. Resource Allocation Tradeoffs in Manila’s Peri-urban Vegetable Production Systems: An Application of Multiple Objective Programming. Agricultural Systems, 87: 147-168.
14. Fogel, D. B. 1977. The Advantages of Evolutionary Computation. In: “Proceedings of Biocomputing and emergent computation: BCEC97”, World Scientific Press. PP. 1- 11.
15. Gendreau, M. and Potvin, J. -Y. 2010. Handbook of Metaheuristics. Springer, New York, PP. 41-59.
16. Glover, F. and Kochenberger, G. A. 2003. Handbook of Metaheuristics. Springer, New York, PP 145 - 321.
17. Hoffman, K. L. and Ralphs, T. K. 2013. Integer and Combinatorial Optimization. In: "Encyclopedia of Operations Research and Management Science". Springer, United States, PP. 771-783.
18. Hoos, H. H. and Stützle, T. 2004. Stochastic Local Search: Foundations and Applications. Morgan Kaufman, Elsevier.
19. Huang, V. L., Zhao, S. Z., Mallipeddi, R. and Suganthan, P. N. 2009. Multi-objective Optimization Using Self-adaptive Differential Evolution Algorithm. In IEEE Congress on Evolutionary Computation (CEC'09), PP. 190-194.
20. Khare, V., Yao, X. and Deb, K. 2003. Performance Scaling of Multi-objective Evolutionary Algorithms. In: "Proceedings of Evolutionary Multi-criterion Optimization". Springer, Birmingham, UK, PP. 376-390
21. Knowles, J. and Corne, D. 2002. On Metrics for Comparing Nondominated sets. In: “Proceedings of the 2002 Congress on Evolutionary Computation, 2002. CEC '02”. IEEE, Honolulu, 1, 711-716
22. Kukkonen, S. and Lampinen, J. 2005. GDE3: The third evolution step of generalized differential evolution. In Proceedings of IEEE Congress on Evolutionary Computation (CEC'09), Edinburgh, Scotland, PP. 443-450
23. Kukkonen, S. and Lampinen, J. 2009. Performance Assessment of Generalized Differential Evolution 3 with a Given Set of Constrained Multi-objective Test Problems. In Proceedings of IEEE Congress on Evolutionary Computation (CEC'09), Trondheim, PP. 1943-1950
24. Luo, B., Zheng, J., Xie, J. and Wu, J. 2008. Dynamic Crowding Distance? A New Diversity Maintenance Strategy for MOEAs. In Proceedings of Fourth International IEEE Conference on Natural Computation (ICNC'08), Jinan, PP. 580-585
25. Manzano-Agugliaro, F., San-Antonio-Gómez, C., López, S., Montoya, F. G. and Gil, C. 2013. Pareto-based Evolutionary Algorithms for the Calculation of Transformation Parameters and Accuracy Assessment of Historical Maps. Comput. Geosci., 57: 124-132.
26. Márquez, A. L., Baños, R., Gil, C., Montoya, M. G., Manzano‐Agugliaro, F., & Montoya, F. G. 2011. Multi‐objective Crop Planning Using Pareto‐based Evolutionary Algorithms. Agr. Econ., 42: 649-656.
27. Mohan, C. K. and Mehrotra, K. G. 2011. Reference Set Metrics for Multi-objective Algorithms. In: "Swarm, Evolutionary, and Memetic Computing". Springer, Berlin Heidelberg, 723-730.
28. Papadimitriou, C. H. and Steiglitz, K. 1998. Combinatorial Optimization: Algorithms and Complexity. Courier Dover Publications, New York, PP. 156–190.
29. Price, K. V., Storn, R. M. and Lampinen, J. A. 2005. Differential Evolution a Practical Approach to Global Optimization. Natural Computing, Springer, Berlin Heidelberg, PP. 37–134.
30. Puchinger, J. and Raidl, G. R. 2005. Combining Metaheuristics and Exact Algorithms in Combinatorial Optimization: A Survey and Classification. In: "Artificial Intelligence and Knowledge Engineering Applications: A Bioinspired Approach". Springer, Berlin Heidelberg, PP. 41-53.
31. Qin, A. K., Huang, V. L. and Suganthan, P. N. 2009. Differential Evolution Algorithm with Strategy Adaptation for Global Numerical Optimization. IEEE Transactions on Evolutionary Computation, 13: 398-417.
32. Raidl, G. R. 2006. A Unified View on Hybrid Metaheuristics. In: "Hybrid Metaheuristics". Springer, Berlin Heidelberg, PP. 1-12.
33. Raju, K. S., Vasan, A., Gupta, P., Ganesan, K. and Mathur, H. 2012. Multi-objective Differential Evolution Application to Irrigation Planning. ISH J. Hydraulic Engineering, 18: 54-64.
34. Robič, T. and Filipič, B. 2005. DEMO: Differential Evolution for Multiobjective Optimization. In: "Proceedings of Evolutionary Multi-criterion Optimization". Springer, Berlin Heidelberg, PP. 520-533
35. Sarker, R. A. and Quaddus, M. 2002. Modelling a nationwide crop planning problem using a multiple criteria decision making tool. Computers Industrial Engineering, 42: 541-553.
36. Sarker, R. A. and Ray, T. 2009. An Improved Evolutionary Algorithm for Solving Multi-objective Crop Planning Models. Comput. Electronics Agriculture, 68: 191-199.
37. Sarker, R. A., Talukdar, S. and Haque, A. 1997. Determination of Optimum Crop Mix for Crop Vultivation in Bangladesh. Appl. Math. Model., 21: 621-632.
38. Talbi, E. 2002. A Taxonomy of Hybrid Metaheuristics. J. Heuristics, 8: 541-564.
39. Talbi, E. 2009. Metaheuristics: From Design to Implementation. Wiley, John Wiley & Sons, Hoboken. PP 308–384.
40. Zhou, A., Qu, B. -Y., Li, H., Zhao, S. -Z., Suganthan, P. N. and Zhang, Q. 2011. Multiobjective Evolutionary Algorithms: A Survey of the State of the Art. Swarm Evolutionary Computation, 1: 32-49.
41. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C. M. and Da Fonseca, V. G. 2003. Performance Assessment of Multiobjective Optimizers: An Analysis and Review. IEEE Transactions on Evolutionary Computation, 7: 117-132.