Multiobjective Optimization of Crop-mix Planning Using Generalized Differential Evolution Algorithm

Authors
Department of Information Technology, Durban University of Technology, P. O. Box: 1334, Durban 4000, South Africa.
Abstract
This paper presents a model for constrained multiobjective optimization of mixed-cropping planning. The decision challenges that are normally faced by farmers include what to plant, when to plant, where to plant and how much to plant in order to yield maximum output. Consequently, the central objective of this work is to concurrently maximize net profit, maximize crop production and minimize planting area. For this purpose, the generalized differential evolution 3 algorithm was explored to implement the mixed-cropping planning model, which was tested with data from the South African grain information service and the South African abstract of agricultural statistics. Simulation experiments were conducted using the non-dominated sorting genetic algorithm II to validate the performance of the generalized differential evolution 3 algorithm. The empirical findings of this study indicated that generalized differential evolution 3 algorithm is a feasible optimization tool for solving optimal mixed-cropping planning problems.

Keywords


1. AAS (Abstract of Agricultural Statistics). 2012. Directorate Agricultural Information. National Department of Agriculture, Pretoria.
2. Abbass, H. A., Sarker, R. and Newton, C. 2001. PDE: A Pareto-frontier Differential Evolution Approach for Multi-objective Optimization Problems. In IEEE Congress on Evolutionary Computation (CEC’2001), 2: 971-978.
3. Adeyemo, J., Bux, F. and Otieno, F. 2010. Differential Evolution Algorithm for Crop Planning: Single and Multi-objective Optimization Model. Int. J. Phys. Sci., 5(10): 1592-1599.
4. Adeyemo, J. and Otieno, F. 2009. Optimizing Planting Areas Using Differential Evolution (DE) and Linear Programming (LP). Int. J. Phys. Sci., 4: 212-220.
5. Brunelli, R. and von Lücken, C. 2009. Optimal Crops Selection Using Multiobjective Evolutionary Algorithms. AI Magazine, 30: 96.
6. Chetty, S. and Adewumi, A. 2014. Comparison of Swarm Intelligence Meta-heuristics for the Annual Crop Planning Problem. IEEE Transactions on Evolutionary Computation, 18: 258–268.
7. Deb, K. 2001. Multi-objective optimization using evolutionary algorithms, John Wiley & Sons, Inc., New York, NY, PP 13-46.
8. Deb, K. and Jain, S. 2002. Running Performance Metrics for Evolutionary Multi-objective Optimizations. In Proceedings of the Fourth Asia-Pacific Conference on Simulated Evolution and Learning (SEAL'02), Singapore, PP. 13-20
9. Deb, K. and Tiwari, S. 2005. Omni-optimizer: A Procedure for Single and Multi-objective Optimization. In Proceedings of Evolutionary Multi-Criterion Optimization, Springer, PP. 47-61
10. Detlefsen, N. and Jensen, A. L. 2007. Modelling Optimal Crop Sequences Using Network Flows. Agricultural Systems, 94: 566-572.
11. Dumitrescu, I. and Stützle, T. 2003. Combinations of Local Search and Exact Algorithms. In: "Applications of Evolutionary Computing". Springer, Berlin Heidelberg, PP. 211-223.
12. Einstein, A. 2012. Generalized Differential Evolution. Saku Kukkonen, 51 PP.
13. Francisco, S. R. and Ali, M. 2006. Resource Allocation Tradeoffs in Manila’s Peri-urban Vegetable Production Systems: An Application of Multiple Objective Programming. Agricultural Systems, 87: 147-168.
14. Fogel, D. B. 1977. The Advantages of Evolutionary Computation. In: “Proceedings of Biocomputing and emergent computation: BCEC97”, World Scientific Press. PP. 1- 11.
15. Gendreau, M. and Potvin, J. -Y. 2010. Handbook of Metaheuristics. Springer, New York, PP. 41-59.
16. Glover, F. and Kochenberger, G. A. 2003. Handbook of Metaheuristics. Springer, New York, PP 145 - 321.
17. Hoffman, K. L. and Ralphs, T. K. 2013. Integer and Combinatorial Optimization. In: "Encyclopedia of Operations Research and Management Science". Springer, United States, PP. 771-783.
18. Hoos, H. H. and Stützle, T. 2004. Stochastic Local Search: Foundations and Applications. Morgan Kaufman, Elsevier.
19. Huang, V. L., Zhao, S. Z., Mallipeddi, R. and Suganthan, P. N. 2009. Multi-objective Optimization Using Self-adaptive Differential Evolution Algorithm. In IEEE Congress on Evolutionary Computation (CEC'09), PP. 190-194.
20. Khare, V., Yao, X. and Deb, K. 2003. Performance Scaling of Multi-objective Evolutionary Algorithms. In: "Proceedings of Evolutionary Multi-criterion Optimization". Springer, Birmingham, UK, PP. 376-390
21. Knowles, J. and Corne, D. 2002. On Metrics for Comparing Nondominated sets. In: “Proceedings of the 2002 Congress on Evolutionary Computation, 2002. CEC '02”. IEEE, Honolulu, 1, 711-716
22. Kukkonen, S. and Lampinen, J. 2005. GDE3: The third evolution step of generalized differential evolution. In Proceedings of IEEE Congress on Evolutionary Computation (CEC'09), Edinburgh, Scotland, PP. 443-450
23. Kukkonen, S. and Lampinen, J. 2009. Performance Assessment of Generalized Differential Evolution 3 with a Given Set of Constrained Multi-objective Test Problems. In Proceedings of IEEE Congress on Evolutionary Computation (CEC'09), Trondheim, PP. 1943-1950
24. Luo, B., Zheng, J., Xie, J. and Wu, J. 2008. Dynamic Crowding Distance? A New Diversity Maintenance Strategy for MOEAs. In Proceedings of Fourth International IEEE Conference on Natural Computation (ICNC'08), Jinan, PP. 580-585
25. Manzano-Agugliaro, F., San-Antonio-Gómez, C., López, S., Montoya, F. G. and Gil, C. 2013. Pareto-based Evolutionary Algorithms for the Calculation of Transformation Parameters and Accuracy Assessment of Historical Maps. Comput. Geosci., 57: 124-132.
26. Márquez, A. L., Baños, R., Gil, C., Montoya, M. G., Manzano‐Agugliaro, F., & Montoya, F. G. 2011. Multi‐objective Crop Planning Using Pareto‐based Evolutionary Algorithms. Agr. Econ., 42: 649-656.
27. Mohan, C. K. and Mehrotra, K. G. 2011. Reference Set Metrics for Multi-objective Algorithms. In: "Swarm, Evolutionary, and Memetic Computing". Springer, Berlin Heidelberg, 723-730.
28. Papadimitriou, C. H. and Steiglitz, K. 1998. Combinatorial Optimization: Algorithms and Complexity. Courier Dover Publications, New York, PP. 156–190.
29. Price, K. V., Storn, R. M. and Lampinen, J. A. 2005. Differential Evolution a Practical Approach to Global Optimization. Natural Computing, Springer, Berlin Heidelberg, PP. 37–134.
30. Puchinger, J. and Raidl, G. R. 2005. Combining Metaheuristics and Exact Algorithms in Combinatorial Optimization: A Survey and Classification. In: "Artificial Intelligence and Knowledge Engineering Applications: A Bioinspired Approach". Springer, Berlin Heidelberg, PP. 41-53.
31. Qin, A. K., Huang, V. L. and Suganthan, P. N. 2009. Differential Evolution Algorithm with Strategy Adaptation for Global Numerical Optimization. IEEE Transactions on Evolutionary Computation, 13: 398-417.
32. Raidl, G. R. 2006. A Unified View on Hybrid Metaheuristics. In: "Hybrid Metaheuristics". Springer, Berlin Heidelberg, PP. 1-12.
33. Raju, K. S., Vasan, A., Gupta, P., Ganesan, K. and Mathur, H. 2012. Multi-objective Differential Evolution Application to Irrigation Planning. ISH J. Hydraulic Engineering, 18: 54-64.
34. Robič, T. and Filipič, B. 2005. DEMO: Differential Evolution for Multiobjective Optimization. In: "Proceedings of Evolutionary Multi-criterion Optimization". Springer, Berlin Heidelberg, PP. 520-533
35. Sarker, R. A. and Quaddus, M. 2002. Modelling a nationwide crop planning problem using a multiple criteria decision making tool. Computers Industrial Engineering, 42: 541-553.
36. Sarker, R. A. and Ray, T. 2009. An Improved Evolutionary Algorithm for Solving Multi-objective Crop Planning Models. Comput. Electronics Agriculture, 68: 191-199.
37. Sarker, R. A., Talukdar, S. and Haque, A. 1997. Determination of Optimum Crop Mix for Crop Vultivation in Bangladesh. Appl. Math. Model., 21: 621-632.
38. Talbi, E. 2002. A Taxonomy of Hybrid Metaheuristics. J. Heuristics, 8: 541-564.
39. Talbi, E. 2009. Metaheuristics: From Design to Implementation. Wiley, John Wiley & Sons, Hoboken. PP 308–384.
40. Zhou, A., Qu, B. -Y., Li, H., Zhao, S. -Z., Suganthan, P. N. and Zhang, Q. 2011. Multiobjective Evolutionary Algorithms: A Survey of the State of the Art. Swarm Evolutionary Computation, 1: 32-49.
41. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C. M. and Da Fonseca, V. G. 2003. Performance Assessment of Multiobjective Optimizers: An Analysis and Review. IEEE Transactions on Evolutionary Computation, 7: 117-132.