Molecular Cloning and Characterization of a Cyclotide Gene Family in Viola modesta Fenzl

Authors
1 Department of Agricultural Biotechnology, Faculty of Agriculture, University of Kurdistan, Sanandaj, Islamic Republic of Iran.
2 Department of Animal Science, Faculty of Agriculture, University of Kurdistan, Sanandaj, Islamic Republic of Iran.
3 Research Center of Agriculture and Natural Resources, Kurdistan Province, Sanandaj, Islamic Republic of Iran.
Abstract
Cyclotides are small disulfide-rich proteins that have the unusual feature of a cyclic backbone. Cyclotides have a range of interesting biological activities and are found in a variety of tropical plants from the Rubiaceae, Violaceae, Cucurbitaceae and Fabaceae families. We have cloned and characterized cyclotides in Viola modesta, a Viola species native to western Asia, which was collected from the Kurdistan Province of Iran. Fifteen cyclotide sequences were obtained using homology based PCR strategy. Sequence analysis showed that 14 of them had continued open reading frames and showed high level of similarity to cyclotide genes from other species of the Violaceae. After analyzing the full endoplasmic reticulum signals of V. modesta cyclotides, two conserved sequences, AAFALPA and ATAFALP, were detected. Analysis of isolated cyclotide sequences showed that they all belonged to bracelet family and were separated into two subclasses. Phylogenetic analysis of cyclotide genes from V. modesta and other Viola species revealed that most V. modesta genes showed close relationship with their homologs from the Violaceae, while the V. modesta genes formed two separate clades. Transcription analysis by semi-quantitative RT-PCR revealed that Vmcyc1 and Vmcyc7 were differentially expressed in all tested tissues including roots, stems, leaves, flowers, seeds, peduncles, and capsules with the highest transcript level in the capsules.

Keywords


1. Bendtsen, J. D., Nielsen, H., Von Heijne, G. and Brunak, S. 2004. Improved Prediction of Signal Peptides. SignalP 3.0. J. Mol. Biol., 340: 783-795.
2. Burman, R., Gruber, C. W., Rizzardi, K., Herrmann, A., Craik, D. J., Gupta, M. P. and Goransson, U. 2010. Cyclotide Proteins and Precursors from the Genus Gloeospermum: Filling a Blank Spot in the Cyclotide Map of Violaceae. Phytochem., 71: 13-20
3. Chen, B., Colgrave, M. L., Daly, N. L., Rosengren, K. J., Gustafson, K. R. and Craik, D. J. 2005. Isolation and Characterization of Novel Cyclotides from Viola hederaceae: Solution Structure and Anti-HIV Activity of vhl-1, a Leaf-specific Expressed Cyclotide. J. Biol. Chem., 280: 22395-22405
4. Craik, D. J. 2012. Host-defense Activities of Cyclotides. Toxin., 4: 139-156
5. Craik, D. J., Daly, N. L. Bond, T. and Waine, C. 1999. Plant Cyclotides: A Unique Family of Cyclic and Knotted Proteins that Defines the Cyclic Cystine Knot Structural Motif. J. Mol. Biol., 294: 1327-1336.
6. Craik, D. J., Daly, N. L. and Waine, C. 2001. The Cystine Knot Motif in Toxins and Implications for Drug Design. Toxicon., 39: 43-60.
7. Daly, N. L., Love, S., Alewood, P. F. and Craik, D. J. 1999. Chemical Synthesis and Folding Pathways of Large Cyclic Polypeptides: Studies of the Cystine Knot Polypeptide Kalata B1. Biochem., 38: 10606-10614.
8. Dutton, J. L., Renda, R. F. Waine, C., Clark, R. J., Daly, N. L., Jennings, C. V., Anderson, M. A. and Craik, D. J. 2004. Conserved Structural and Sequence Elements Implicated in the Processing of Gene-encoded Circular Proteins. J. Biol. Chem., 279: 46858-46867.
9. Erben, M. 1996. The Significance of Hybridization on the Forming of Species in the Genus Viola. Bocconea., 5: 113-118.
10. Gerlach S. L. and Mondal, D. 2012. The Bountiful Biological Activities of Cyclotides. Chron. Young Scientist, 3: 169.
11. Gran, L. 1973. Oxytocic Principles of Oldenlandia affinis. Lloydia 36: 174-178.
12. Herrmann A., E. Svangard, J. Gullbo, L. Bohlin, and U. Goransson. 2006. Key Role of Glutamic Acid for the Cytotoxic Activity of the Cyclotide Cycloviolacin O2. Cell. Mol. Life. Sci., 63: 235-245.
13. Herrmann. A., Burman, R., Mylne, J. S., Karlsson, G., Gullbo, J., Craik, D. J., Clark, R. J. and Goransson, U. 2008. The Alpine Violet (Viola biflora), Is a Rich Source of Cyclotides with Potent Cytotoxicity. Phytochem., 69: 939-952.
14. Hernandez, J. F., Gagnon, J., Chiche, L., Nguyen, T. M., Andrieu, J. P., Heitz, A., Hong, T. T., Pham, T. T. C., and Nguyen, D. L. 2000. Squash Trypsin Inhibitors from Momordica cochinchinensis Exhibit an Atypical Macrocyclic Structure. Biochem., 39: 5722–5730.
15. Jennings, C., West, J., Waine, C., Craik, D. and Anderson, M. 2001. Biosynthesis and Insecticidal Properties of Plant Cyclotides: The Cyclic Knotted Proteins from Oldenlandia affinis. Proc. Natl. Acad. Sci. USA, 98: 10614–10619.
16. Lindholm, P., Goransson, U., Johansson, S., Claeson, P., Gullbo, J., Larsson, R., Bohlin, L. and Backlund, A. 2002. Cyclotides: A Novel Type of Cytotoxic Agents. Mol. Cancer. Ther., 1: 365-369.
17. Mazzara, M. and James, D. J. 2000. The Influence of Photoperiodic Growth Condition on Isolation of RNA from Strawberry (Fragaria×ananassa Duch.) Tissue. Mol. Biotech., 15: 237-241.
18. Mulvenna, J. P., Sando, L. and Craik, D. J. 2005. Processing of a 22 kDa Precursor Protein to Produce the Circular Protein Tricyclon A. Structure, 13: 691-701.
19. Qin, Q., McCallum, E. J., Kaas, Q., Suda, J., Saska, I., Craik, D. J. and Mylne, J. S. 2010. Identification of Candidates for Cyclotide Biosynthesis and Cyclisation by Expressed Sequence Tag Analysis of Oldenlandia affinis. BMC Genomic., 11: 111.
20. Simonsen, S. M., Sando, L., Ireland, D. C., Colgrave, M. L., Bharathi, R., Goransson, U. and Craik, D. J. 2005. A Continent of Plant Defense Peptide Diversity: Cyclotides in Australian Hybanthus (Violaceae). Plant Cell., 17: 3176-3189.
21. Svangard, E., Goransson, U., Hocaoglu, Z., Gullbo, J., Larsson, R., Claeson, P. and Bohlin, L. 2004. Cytotoxic Cyclotides from Viola tricolor. J. Nat. Prod., 67: 144-147.
22. Tam, J. P., Lu, Y. A., Yang, J. L. and Chiu, K. W. 1999. An Unusual Structural Motif of Antimicrobial Peptides Containing End-to-end Macrocycle and Cystine-knot Disulfides. Proc. Natl. Acad. Sci. USA, 96: 8913–8918.
23. Tang, J., Wang, C. K., Pan, X., Yan, H., Zeng, G., Xu, W., He, W., Daly, N. L., Craik, D. J. and Tan, N. 2010. Isolation and Characterization of Cytotoxic Cyclotides from Viola tricolor. Peptide., 31: 1434-1440.
24. Trabi, M. and Craik, D. J. 2004. Tissue-specific Expression of Head-to-tail Cyclized Miniproteins in Violaceae and Structure Determination of the Root Cyclotide Viola hederacea Root Cyclotide 1. Plant Cell., 16: 2204-2216.
25. Trabi, M., Svangard, E., Herrmann, A., Göransson, U., Claeson, P., Craik, D. J. and Bohlin, L. 2004. Variations in Cyclotide Expression in Viola Species. J. Nat. Prod., 67:806-810.
26. Wang, C. K. L., Kaas, Q., Chiche, L. and Craik, D. J. 2008. CyBase: A Database of Cyclic Protein Sequences and Structures, with Applications in Protein Discovery and Engineering. Nucleic Acids. Res., 36: 206-210.
27. Witherup, K. M., Bogusky, M. J., Anderson, P. S., Ramjit, H., Ransom, R. W., Wood, T., and Sardana, M. 1994. Cyclopsychotride A, a Biologically Active, 31-residue Cyclic Peptide Isolated from Psychotria longipes. J. Nat. Prod. 57: 1619-1625.
28. Zhang, J., Liao, B., Craik, D. J., Li, J. T., Hu, M. and Shu, W. S. 2009. Identification of Two Suites of Cyclotide Precursor Genes from Metallophyte Viola baoshanensis: cDNA Sequence Variation, Alternative RNA Splicing and Potential Cyclotide Diversity. Gene, 431: 23-32.