Characterization of Structure and Cellular Immunity Bioactivity of Milk-Derived Galactooligosacchrides Prepared by Lactobacillus delbrueckii subsp. bulgaricus Fermentation

Authors
Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, People's Republics of China.
Abstract
In this study, the milk-derived GalactoOligoSaccharides (GOS) were produced by Lactobacillus delbrueckii subsp. bulgaricus and refined by an ultrafiltration-nanofiltration continuous membrane. By further investigation, we found that the GOS product purified by gel permeation chromatography mainly contained low molecular weight disaccharide and trisaccharide, that is, 4-β-galactobiose and tri-galacto-oligosaccharides. The cellular immune activity of the purified GOS was evaluated by using Intestinal Epithelial Cells (IECs). Results showed that GOS could significantly (P< 0.05) promote IECs proliferation in a dose and time dependent manner, and the relative proliferation rate after 24 hours culture was high up to 158% at the concentration of 100 μg mL-1, which was three time the value after 4 hours culture without GOS. Moreover, the production of IL-6 was observably increased and up to 133.54 ng L-1 with addition of 100 μg mL-1 GOS. These data implied that the purified GOS might have a role in promoting the immune adjustment, which could be utilized as a novel and natural immunoregulatory agent in the field of medicine and functional food. This work also revealed that the employment of transgalactosylation activity of β-galactosidase derived from the fermentation of probiotics such as Lactobacillus delbrueckii subsp. bulgaricus would enhance the value of the milk product due to the form of GOS.

Keywords


1. An, S. M., Wu, J. H., Qian, L. F., Gao, Y. L., Wu, Y. and Yu, G. P. 2013. Applications of Ultrafiltration-nanofiltration Membrane Continuous Combination Technology for Refining of Milk-Derived Oligosaccharides. Adv. Mater. Res., 634-638: 1429-1434.
2. AOAC Official Method. 2001. Determination of Trans-galactooligosaccharides (TGOS) in Selected Food Products. AOAC International, Gaithersburg, Maryland, USA.
3. Arce-Cervantes, O., Mendoza, G., Miranda, L., Meneses, M. and Loera, O. 2013. Efficiency of Lignocellulolytic Extracts from Thermotolerant Strain Fomes sp. EUM1: Stability and Digestibility of Agricultural Wastes. J. Agr. Sci. Tech., 15(2): 229-239.
4. Bandyopadhyay, S., Cahill, C., Balleidier, A., Huang, C., Lahiri, D. K. and Rogers, J. T. 2013. Novel 5′ Untranslated Region Directed Blockers of Iron-Regulatory Protein-1 Dependent Amyloid Precursor Protein Translation: Implications for Down Syndrome and Alzheimer's Disease. PLOS ONE, 8: 1-14.
5. Barnard, J. A., Beauchamp, R. D., Coffey, R. J. and Moses, H. L. 1989. Regulation of Intestinal Epithelial Cell Growth by Transforming Growth Factor Type. National Acad. Sci., 86: 1578-1582.
6. Bashari, M., Lagnika, C., Ocen, D., Chen, H. Y., Wang, J. P., Xue, X. M., Jin, Z. Y 2013. Separation and Characterization of Dextran Extracted from Deteriorated Sugarcane. Int. J. Biol. Macromol., 59: 246-254.
7. Boehm, G. and Stahl, B. 2007. Oligosaccharides from Milk. J. Nutr., 137: 847S-849S.
8. Bromberg, J. and Wang, T. C. 2009. Inflammation and Cancer: IL-6 and STAT3 Complete the Link. Cancer Cell, 15: 79-80.
9. Cho, Y. J., Shin, H. J. and Bucke, C. 2003. Purification and Biochemical Properties of a Galactooligosaccharide Producing β-Galactosidase from Bullera singularis. Biotechnol. Lett., 25: 2107-2111.
10. Chonan, O., Matsumoto, K. and Watanuki, M. 1995. Effect of Galactooligosaccharides on Calcium Absorption and Preventing Bone Loss in Ovariectomized Rats. Biosci. Biotech. Bioch., 59: 236-239.
11. Coimbra, M. A., Barros, A., Rutledge, D. N. and Delgadillo, I. 1999. FTIR Spectroscopy as a Tool for the Analysis of Olive Pulp Cell Wall Polysaccharide Extracts. Carbohyd. Res., 317:145-154.
12. de Slegte J. 2002. Determination of Trans-galacto-oligosaccharides in Selected Food Products by Ion-exchange Chromatography: Collaborative Study. J. AOAC Int., 85:417-423.
13. Drakoularakou, A., Tzortzis, G., Rastall, R. A. and Gibson, G. R. 2010. A Double-blind, Placebo-controlled, Randomized Human Study Assessing the Capacity of a Novel Galacto-oligosaccharide Mixture in Reducing Travellers' Diarrhoea. Eur. J. Clin. Nutr., 64: 146-152.
14. DuBois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A. and Smith, F. 1956. Colorimetric Method for Determination of Sugars and Related Substances. Anal. Chem., 28: 350-356.
15. Ghose, T. K. 1987. Measurement of Cellulase Activities. Pure. Appl. Chem., 59: 257-268.
16. Gopalakrishnan, A., Clinthorne, J. F., Rondini, E. A., McCaskey, S. J., Gurzell, E. A., Langohr, I. M., Gardner, E. M., Fenton, J. I. 2012. Supplementation with Galacto-Oligosaccharides Increases the Percentage of NK Cells and Reduces Colitis Severity in Smad3-deficient Mice1–3. J. Nutr., 142:1336-1342.
17. Gosling, A., Stevens, G. W., Barber, A. R., Kentish, S. E. and Gras, S. L. 2010. Recent Advances Refining Galactooligosaccharide Production from Lactose. Food Chem., 121: 307-318.
18. Havard, M., Ois Dautry, F. and Tchénio, T. 2011. A Dormant State Modulated by Osmotic Pressure Controls Clonogenicity of Prostate Cancer Cells. J. Biol. Chem., 286: 44177-44186.
19. Hernández, O., Ruiz-Matute, A. I., Olano, A., Moreno, F. J. and Sanz, M. L. 2009. Comparison of Fractionation Techniques to Obtain Prebiotic Galactooligosaccharides. Int. Dairy J., 19:531-536.
20. Hu, L. N., Fang, X.Y., Liu, H. L., Gao, Z., Wu, X. F., Sun, Y., Wu, X. D., Xu, Q. 2013. Protective Effects of 18β-Glycyrrhetinic Acid on LPS-induced Injury in Intestinal Epithelial cells. Chin. J. Nat. Med., 11: 0024-0029.
21. Husain, Q. 2010. Beta Galactosidases and Their Potential Applications: A Review. Crit. Rev. Biotechnol., 30: 41-62.
22. Jokar, A. and Karbassi, A. 2011. In-house Production of Lactose-hydrolysed Milk by Beta-galactosidase from Lactobacillus bulgaricus. J. Agr. Sci. Tech., 13: 577-584.
23. Lee, S. E., Seo, H. B., Kim, H. J., Yeon, J. H. and Jung, K. H. 2011. Galactooligosaccharide Synthesis by Active β-Galactosidase Inclusion Bodies-containing Escherichia coli Cells. J. Microbiol. Biotechn., 21: 1151-1158.
24. Li, T., Fan, G. X., Wang, W., Li, T. and Yuan, Y. K. 2007. Resveratrol Induces Apoptosis, Influences IL-6 and Exerts Immunomodulatory Effect on Mouse Lymphocytic Leukemia both in Vitro and in Vivo. Int. Immunopharmacol., 7: 1221-1231.
25. Li, T., Hou, Y. X., Cai, G. Y., Shen, Z. W., Xi, B. S. and Tao, Z. 2001. Analysis of the Effect of Strong Sound Wave on Plant Cells using Flow Cytometry. Shengwu Wuli Xuebao, 17: 195-198.
26. Lowry, O. H., Rosenbrough, N. J., Fair, A. L. and Randall, R. J. 1951. Protein Measurement with the Folin-phenol Reagents. J. Biol. Chem., 193: 265-275.
27. Marks, D. C., Belov, L., Davey, M. W., Davey, R. A. and Kidman, A. D. 1992. The MTT Cell Viability Assay for Cytotoxicity Testing in Multidrug-resistant Human Leukemic Cells. Leukemia Res., 16: 1165-1173.
28. Martínez-Villaluenga, C., Cardelle-Cobas, A., Corzo, N. and Olano, A. 2008. Study of Galactooligosaccharide Composition in Commercial Fermented Milks. J. Food Compos. Anal., 21: 540-544.
29. Miller, T. L. and McGee, D. W. 2002. Epithelial Cells Respond to Proteolytic and Non-proteolytic Detachment by Enhancing Interleukin-6 Responses. Immunol., 105: 101-110.
30. Moussa, T. A. A. and Ali, D. M. I. 2008. Isolation and Identification of Novel Disaccharide of µ-L-Rhamnose from Penicillium chrysogenum. World Appl. Sci. J., 3: 476-486.
31. Pan, X. D., Chen, F. Q., Wu, T. X., Tang, H. G. and Zhao, Z. Y. 2009. Prebiotic Oligosaccharides Change the Concentrations of Short-chain Fatty Acids and the Microbial Population of Mouse Bowel. J. Zhejiang Univ.-Sc. B, 10: 258-263.
32. Park, H. Y., Kim, H. J., Lee, J. K., Kim. D. and Oh, D. K. 2007.Galactooligosaccharide Production by a Thermostable β-galactosidase from Sulfolobus solfataricus. World J. Microb. Biot., 24: 1553-1558.
33. Petrova, V. Y. and Kujumdzieva, A. V. 2010. Thermotolerant Yeast Strains Producers of Galactooligosaccharides. Biotechnol. Biotec. Eq., 24: 1612-1619.
34. Pitman, R. S. and Blumberg, R. S. 2000. First Line of Defense: The Role of the Intestinal Epithelium as an Active Component of the Mucosal Immune System. J. Gastroenterol., 35: 805-814.
35. Reuter, S., Nygaard, A. R. and Zimmermann, W. 1999. Beta-galactooligosaccharide Synthesis with β-galactosidases from Sulfolobus solfataricus, Aspergillus oryzae, and Escherichia coli. Enzyme Microb. Tech., 25: 509-516.
36. Sako, T., Matsumoto, K. and Tanaka, R. 1999. Recent Progress on Research and Applications of Non-digestible Galacto-oligosaccharides. Int. Dairy J., 9: 69-80.
37. Tomo, T., Shibata, T., Nasu, M., Shibata, k., Izumi, G. and Sofue, K. 2000. Evaluation of Several Saccharides as Osmotic Agent for Peritoneal Dialysate. Periton. Dialysis Int., 20: 727-733.
38. Vinderola, G., Matar, C. and Perdigon, G. 2005. Role of Intestinal Epithelial Cells in Immune Effects Mediated by Gram-positive Probiotic Bacteria: Involvement of Toll-Like Receptors. Clin. Diagn. Lab. Immunol., 12: 1075-1084.
39. Wijnands, M. V. W., Schoterman, H. C., Bruijntjes, J. P., Hollanders, V. M. H. and Woutersen, R. A. 2001. Effect of Dietary Galacto-oligosaccharides on Azoxymethane-induced Aberrant Crypt Foci and Colorectal Cancer in Fisher 344 Rats. Carcinogenesis, 22: 127-132.