Screening and Characterization of Wheat Germplasms for Phytic Acid and Iron Content

Authors
Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, (U. P.) 211004 India.
Abstract
Phytic acid is a major storage form of phosphorous in cereals that acts as food inhibitor by chelating micronutrients and prevents it to be bioavailabe for monogastric animals, including humans. Ninety three wheat (Triticum aestivum L.) germplasms, including cultivars from India, were characterized for phytic acid and Fe contents. Phytic acid contents ranged from 0.59 (IITR 92) to 2.08% (IITR 25). The Fe contents of all wheat germplasms ranged from 9.97 (IITR 25) to 45.77 mg kg−1 (IBW 1133) while historical cultivars from India contain an average of 21.7 mg kg−1 Fe. This initial screening facilitated the identification of diversity in germplasms for this trait that can be exploited for genetic improvement in wheat. Forty eight F2 wheat lines from (WL711×IITR 19) were also evaluated, which demonstrated considerable variation in phytic acid content. Phytic acid contents ranged from 0.58 to 2.01% in F2 lineswith an average of 1.52%. The genotypes showed significant differences in phytic acid and Fe contents. F2 lines of WL711×IITR19 also illustrated variation in phytic acid content that were significant. The progenies having lower phytic acid content compared to parents are useful for further crop improvement. A relatively high broad sense heritability (93.4%) and genetic advance (32.3%) of phytic acid showed that progenies of this cross would be useful for reducing phytic acid.

Keywords


1. Ahmad, I., Mohammad, F., Zeb, A., Noorka,I. R., Farhatullah, and Jadoon, S. A. 2013. Determination and Inheritance of Phytic Acid as Marker in Diverse Genetic Group of Bread Wheat. Am. J. Mol. Bio., 3:158-164.
2. Akond, A. G. M., Crawford, H., Berthold, J., Talukder, Z. I. and Hossain, K. 2001.Minerals (Zn, Fe, Ca and Mg) and Antinutrient (Phytic acid) Constituents in Common Bean. Am. J. Food Tech., 6(3):235-243.
3. Boling, S. D., Douglas, M. W., Johnson, M. L., Wang, X., Parsons, C. M. and Koelkebeck, K. W. 2000. The Effects of Dietary Available Phosphorus Levels and Phytase Performance of Young and Older Laying Hens. Poultry Sci., 79:224–30.
4. Bouis, H. E. and Welch, R. M. 2010. Biofortification: A Sustainable Agricultural Strategy for Reducing Micronutrient Malnutrition in the Global South. Crop Sci., 50:S20–S32.
5. Cakmak, I., Wolfgang, H. P. and Bonnie, M. 2010. Biofortification of Durum Wheat with Zinc and Iron. Cereal Chem., 87:10–20.
6. Chiangmai, P.N., Yodmingkhwan, P., Nilprapruck, P., Aekatasanawan, C. and Kanjanamaneesathian, M. 2011. Screening of Phytic Acid and Inorganic Phosphorus Contents in Corn Inbred Lines and F1 Hybrids in Tropical Environment. Maydica, 54: 331-339.
7. Goutam, U., Kukreja, S., Tiwari, R., Chaudhury, A., Gupta, R. K., Dholakia, B. B. and Yadav, R. 2013. Biotechnological Approaches for Grain Quality Improvement in Wheat: Present Status and Future Possibilities. AJCS, 7(4): 469-483.
8. Guo, Z., Xu. P., Zhang, Z. and Guo, Y.2012. Segregation Ratios of Colored Grains in F1 Hybrid Wheat. Crop Breed. Appl. Biotechnol., 12: 126-131.
9. Gupta, R. K., Gangoliya, S. S. and Singh, N. K. 2013. Reduction of Phytic Acid and Enhancement of Bioavailable Micronutrient in Food Grains. J. food Sci. Tech., 52: 676-684.
10. Guttieri, M., Bowen, D., Dorsch, J. A., Raboy, V. and Souza, E. 2004. Identification and Characterization of Low Phytic Acid Wheat. Crop Sci., 44:418–424.
11. Hirschi, K. D. 2009. Nutrient Biofortification of Food Crop. Annu. Rev.Nutr., 29:401-421.
12. Hitz, W. D., Carlson, T. J., Kerr, P. S. and Sebastian, S. A. 2002. Biochemical and Molecular Characterization of a Mutation That Confers a Decreased Raffinosaccharide and Phytic Acid Phenotype on Soybean Seeds. Plant Physiol., 128: 650–660.
13. Hussain, S., Maqsood, M. A., Renge, Z. and Khan, M. K. 2012. Mineral Bioavailability in Grains of Pakistani Bread Wheat Declines from Old to Current Cultivars. Euphytica, 186:153–163.
14. Johnson, H. W., Robinson, H. F. and Comstock, R. E. 1955. Estimates of Genetic and Environmental Variability in Soybean. Agron. J., 47:314-318.
15. Khan, A. J., Ali, A., Farooq-i-Azam and Zeb, A. 2007. Identification and Isolation of Low Phytic Acid Wheat (Triticum aestivum L.) Inbred Lines/mutants. Pakistan J. Bot., 39:2051-2058.
16. Larson, S. R., Rutger, J. N., Young, K. A. and Raboy, V. 2000. Isolation and Genetic Mapping of Non-lethal Rice (Oryza Sativa L.) Low Phytic Acid Mutation. Crop Sci. 40:1397–1405.
17. Larson, S. R., Young, K. A., Cook, A., Blake, T. K. and Raboy, V. 1998. Linkage Mapping of Two Mutations That Reduce Phytic Acid Content of Barley Grain. Theor. App. Genet., 97:141–146.
18. Lopez, H. W., Leenhardt, F., Coudray, C. and Remesy, C. 2002. Minerals and Phytic Acid Interactions: Is It a Real Problem For Human Nutrition? Int. J. Food Sci. Tech., 37: 727–739.
19. Lush, J. L. 1940. Intra-sire Correlation and Regression of Offspring in Rams as a Method of Estimating Heritability of Characters. Proc. American Soc. Animal Product, 33: 292-301.
20. McKevith, B. 2004. Nutritional Aspects of Cereals. Nutrition Bull., 29: 111–142
21. Nair, K. M. and Iyengar, V. 2009. Iron Content, Bioavailability and Factors Affecting Iron Status of Indians. Indian J. Med. Res., 130: 634-645
22. Raboy, V., Gerbasi, P.F., Young, K. A., Stoneberg, S. D., Pickett, S. G., Bauman, A. T., Murthy, P. P. N., Sheridan, W. F. and Ertl, D. S. 2000. Origin and Seed Phenotype of Maize Low Phytic Acid 1–1 and Low Phytic Acid 2–1. Plant Physiol., 124: 355–368.
23. Ram, S., Sharma, S., Verma, A., Tyagi, B. S. and Pena, R. J. 2011. Comparative Analyses of LMW Glutenin Alleles in Bread Wheat Using Allele-Specific PCR and SDS-PAGE. J. Cereal Sci., 54(3):488–493
24. Rasmussen, S. K. and Hatzack, F. 1998. Identification of Two Low Phytate Barley (Hordeum Vulgare L.) Grain Mutants by TLC and Cereal Genetic Analysis. Hereditas, 129:107–112.
25. Rawat, N., Tiwari, V. K., Singh, N., Randhawa, G. S., Singh, K., Chhuneja, P. and Dhaliwal, H. S. 2009. Evaluation and Utilization of Aegilops and Wild Triticum Species for Enhancing Iron and Zinc Content in Wheat. Genet. Resour. Crop. Evol. 56:53-64.
26. Rengel, Z. and Romheld, V. 2000. Differential Tolerance to Fe and Zn Deficiencies in Wheat Germplasm. Euphytica 113: 219–225.
27. Roos, N., Sorensen, J. C., Sorensen, H., Rasmussen, S. K., Briend, A., Yang, Z. and Huffman, S. L. 2013. Screening for Anti-nutritional Compounds in Complementary Foods and Food Aid Products for Infants And Young Children. Maternal Child Nutrition, 9: 47–71
28. Schroder, B., Breve, G. and Rodehutscord, M. 1996. Mechanisms of Intestinal Phosphorus Absorption and Availability of Dietary Phos‌phorus in Pigs. Dtsch Tieraerztl Wochenschr, 103: 209-214.
29. Singh, B., Kunze, G. and Satyanarayana, T. 2011. Developments in Biochemical Aspects and Biotechnological Applications of Microbial Phytases. Biotechnol. Mol. Biol. Review, 6: 69-87.
30. Vats, P. and Banerjee, U. C. 2004. Production Studies and Catalytic Properties of Phytases (Myo-inositol-hexakis-phosphate Phosphohy‌drolases): An Overview. Enzyme Microb. Technol., 35: 3-14.
31. Wilcox, J., Premachandra, G., Young, K. and Raboy, V. 2000. Isolation of High Seed Inorganic P, Low-phytate Soybean Mutants. Crop Sci., 40:1601–1605.