A Comparative Study of Salt Tolerance of Three Almond Rootstocks: Contribution of Organic and Inorganic Solutes to Osmotic Adjustment

Authors
1 Research Unit of Biodiversity and Valorization of Bioresources in Arid Zones, Faculty of Sciences of Gabes- City Erriadh, Zrig, Gabes 6072, Tunisia.
2 Laboratory of Horticulture, Tunisian National Agricultural Research Institute (INRAT), Rue Hédi Karray 2049 Ariana, Tunisia.
3 Department of Food Technology, University Miguel Hernández, Ctra. Beniel km. 3, 2, 03312 Orihuela, Alicante, Spain.
Abstract
In this study, we assessed the relative contribution of organic and inorganic solutes to osmotic adjustment (OA) in three almond rootstocks subjected to four levels of soil salinity. The results showed that leaf water and osmotic potentials were affected by salinity in GF677 and Bitter almond, but less so in GN15, suggesting a higher selectivity for K+ and Ca2+ against Na+ in this latter rootstock. GN15 excluded Na+ and accumulated Cl-. Nevertheless, in this rootstock, Cl- and Na+ were the main osmolytes involved in OA, while the osmotic role of K+, Ca2+ and Mg2+ was small. Proline had the highest relative contribution of organic solutes to OA in the leaves of GN15 and GF677, while in Bitter almond it was not effective. The role of soluble sugars was rather marginal in terms of OA in all three genotypes. All three rootstocks displayed a degree of OA in the presence of high NaCl concentrations in the growth medium, but used different osmolytes to achieve it. Therefore, breeders should be careful in choosing biochemical parameters to assess OA capability of Prunus genotypes.

Keywords


1. Alarcon, J. J., Sanchez-Blanco M. J., Bolarin M. C. and Torrecillas A. 1993. Water Relations and Osmotic Adjustment in Lycopersicon esculentum and L. pennelli during Short-term Salt Exposure and Recovery. Physiol. Plant, 89: 441-447.
2. Araujo, S. A. M., Silveira, J. A. G., Almeida, T. D., Rocha, I. M. A., Morais, D. L. and Viegas, R. A. 2006. Salinity Tolerance in the Halophyte Atriplex nummularia Lind. Grown under Increasing NaCl Levels. Rev. Bras. Eng. Agríc. Amb., 10: 848–854.
3. Ashraf, M. 2004. Some Important Physiological Selection Criteria for Salt Tolerance in Plants. Flora, 199: 361–376.
4. Bartels, D. and Sunkar, R. 2005. Drought and Salt Tolerance in Plants. Crit. Rev. Plant Sci,. 24: 23–58.
5. Bates, L. S., Waldren, R. P. and Teare, I. D. 1973. Rapid Determination of Free Proline for Water Stress Studies. Plant Soil, 39: 205–208.
6. Blum, A. 1996. Crop Responses to Drought and the Interpretation of Adaptation. Plant Growth Regul., 20: 135-148.
7. Bohnert, H. J. and Jensen, R. G. 1996. Strategies for Engineering Water Stress Tolerance in Plants. Trends Biotech., 14: 89–97.
8. Brugnoli, E. and Lauteri, M. 1991. Effects of Salinity on Stomatal Conductance, Photosynthetic Capacity, and Carbon Isotope Discrimination of Salt-Tolerant (Gossypium hirsutum L.) and Salt-Sensitive (Phaseolus vulgaris L.) C3 Non-Halophytes. Plant Physiol., 95: 628–635.
9. Chaves, M. M., Maroco, J. P. and Pereira, J. S. 2003. Understanding Plant Responses to Drought – from Genes to the Whole Plant. Funct. Plant Biol., 30: 239–264.
10. Dichio, B., Margiotta, G., Xiloyannis, C., Bufo, S. A., Sofo, A. and Cataldi, T. R. I. 2009. Changes in Water Status and Osmolyte Contents in Leaves and Roots of Olive Plants (Olea europaea L.) Subjected to Water Deficit. Trees, 23: 247–256.
11. Dichio, B., Xiloyannis, C., Sofo, A. and Montanaro, G. 2006. Osmotic Regulation in Leaves and Roots of Olive Trees during a Water Deficit and Rewatering. Tree Physiol., 26: 179–185.
12. Gagneul, D., Aïnouche, A., Duhazé, C., Lugan, R., Larher, F. R. and Bouchereau, A. 2007. A Reassessment of the Function of Compatible Solutes in the Halophytic Plumbaginaceae Limonium latifolium. Plant Physiol., 144: 1598–1611.
13. Gebre, G. M. and Tschaplinski, T. J. 2000. Role of Osmotic Adjustment in Plant Productivity. Publication, No. 4981 (ORNL/TM-2000/6), Sciences Division, Oak Ridge National Laboratory, Environ.
14. Geissler, N., Hussin, S. and Koyro, H. W. 2009. Elevated Atmospheric CO2 Concentration Ameliorates Effects of NaCl Salinity on Photosynthesis and Leaf Structure of Aster tripolium L. J. Exp. Bot., 60: 137–151.
15. Gonzalez, A. and Ayerbe, L. 2011. Response of Coleoptiles to Water Deficit: Growth, Turgor Maintenance and Osmotic Adjustment in Barley Plants (Hordeum vulgare L.). Agric. Sci., 2: 159–166.
16. Gucci R., Lombardini L. and Tattini M. 1997. Analysis of Leaf Water Relations in Leaves of Two Olive (Olea europaea) Cultivars Differing in Tolerance to Salinity. Tree Physiol., 17: 13–21.
17. Guerfel, M., Baccouri, O., Boujnah, D. and Zarrouk, M. 2008. Changes in Lipid Composition, Water Relations and Gas Exchange in Leaves of Two Young ‘Chemlali’ and ‘Chetoui’ Olive Trees in Response to Water Stress. Plant Soil, 311: 121–129.
18. Hare, P. D., Cress, W. A. and Van Staden, J. 1998. Dissecting the Roles of Osmolyte Accumulation during Stress. Plant Cell Envir., 21: 535–553.
19. Jones, M. M. and Rawson H. M. 1979. Influence of Rate of Development of Leaf Water Deficits upon Photosynthesis, Leaf Conductance, Water Use Efficiency, and Osmotic Potential in Sorghum. Physiol. Plant., 45: 103-111.
20. Kramer, P. J. and Brix, H. 1965. Measurement of Water Deficit in Plants. Unesco Arid. Zon. Res., 25: 343–531.
21. Lawlor, D. W. and Cornic G. 2002. Photosynthetic Carbon Assimilation and Associated Metabolism in Relation to Water Deficits in Higher Plants. Plant Cell Envir., 25: 275–294.
22. Lutts, S., Kinet, J. M. and Bouharmont, J. 1996. NaCl-induced Senescence in Leaves of Rice (Oryza sativa L.) Cultivars Differing in Salinity Resistance. Ann. Bot., 78: 389–398.
23. Ma, Q., Niknam S. R. and Turner D. W. 2006. Responses of Osmotic Adjustment and Seed Yield of Brassica napus and B. juncea to Soil Water Deficit at Different Growth Stages. Aus. J. Agr. Res., 57: 221-22.
24. Mahouachi, J. 2009. Changes in Nutrient Concentrations and Leaf Gas Exchange Parameters in Banana Plantlets under Gradual Soil Moisture Depletion. Sci. Hortic., 120: 460–466.
25. Martinez-Ballesta, M. C., Martinez, V. and Carvajal, M. 2004. Osmotic Adjustment, Water Relations and Gas Exchange in Pepper Plants Grown under NaCl or KCl. Environ. Exp. Bot., 52: 161–174.
26. Morgan, J. M. 1984. Osmoregulation and Water Stress in Higher Plants. Ann. Rev. Plant Physiol., 35: 299-319.
27. Najafian, S. H., Rahemi, M. and Travallali, V. 2008. Effect of Salinity on Tolerance of Two Bitter Almond Rootstocks. Am.-Eura. J. of Agric. Environ., 3: 264–268.
28. Nobel, P. S. 1992. Arguments for the Use of Physiological Criteria for Improving the Salt Tolerance in Crops. Plant Soil, 146: 99–107.
29. Perez-Perez, J. G., Syvertsen, J. P., Botia, P. and Garcia-Sanchez, F. 2007. Leaf Water Relations and Net Gas Exchange Responses of Salinized Carrizo citrange Seedlings during Drought Stress and Recovery. Ann. Bot., 100: 335–345.
30. Ranjbarfordoei, A., Samson, R. and Van Damme, P. 2002. Effect of Osmotic Stress Induced by a Combination of NaCl and Polyethulene Glycol on Leaf Water status, Photosynthetic Gas Exchange, and Water Use Efficiency of Pisticia khinjuk and P. mutica. Photsynthetica, 40: 1654–1659.
31. Ranjbarfordoei, A., Samson, R. and Van Damme, P. 2006. Chlorophyll Fluorescence Performance of Sweet Almond (Prunus dulcis (Miller) D. Webb) in Response to Salinity Stress Induced by NaCl. Photosynthetica, 44: 513–522.
32. Rhodes, D., Nadolska-Orczyk, A. and Rich, P. J. 2002. Salinity, Osmolytes and Compatible Solutes. In: “Salinity: Environment–Plant–Molecules”, (Eds.): Laüchli, A. and Lüttge, U.. Kluwer Academic Publishers, Netherlands, PP. 181–204.
33. Robyt, J. F. and White B. J. 1987. Biochemical Techniques-theory and Practice. Books/Cole, Publishing Company, Monterey, CA, USA, PP. 267–275.
34. SAS. 1996. Sas Institute User’s Guide: Statistics, Version 550 6 551. SAS Institute, Cary, NC. USA,
35. Schulze, J., Tesfaye, M., Litjens, R. H. M. G., Bucciarelli, B., Trepp, G. and Miller, S. 2002. Malate Plays a Central Role in Plant Nutrition. Plant Soil, 247: 133–139.
36. Shabala, S. N., Shabala, L., Martynenko, A. I., Babourina, O. K. and Newman, I. A. 1998. Salinity Effect on Bioelectric Activity, Growth, Na+ Accumulation and Chlorophyll Fluorescence of Maize Leaves: A Comparative Survey and Prospects for Screening. Aus. J. Plant Physiol., 25: 609–616.
37. Szabados, L. and Savoure, A. 2009. Proline: A Multifunctional Amino Acid. Trends Plant Sci., 2: 89–97.
38. Turner, N. C and Jones, M. M. 1980. Turgor Maintenance by Osmotic Adjustment: A Review and Evaluation. In: “Adaptation of Plants to Water and High Temperature Stress”, (Eds.): Turner, N. C. and Kramer, P. J.. John Wiley and Sons Inc., New York, PP. 87-103.
39. Van den Ende, W. and El-Esawe, S. K. 2013. Sucrose Signalling Pathways Leading to Fructan and Anthocyanin Accumulation: A Dual Function in Abiotic and Biotic Stress Responses? Environ. Exp. Bot., http://dx.doi.org/10.1016/j.envexbot.2013.09.017.
40. Wang, W. X., Barak, T., Vinocur, B., Shoseyov, O. and Altman, A. 2003. Abiotic Resistance and Chaperones: Possible Physiological Role of SP1, a Stable and Stabilizing Protein from Populus. In: “Plant Biotechnology 2000 and Beyond”, (Ed.): Vasil, I. K.. Kluwer, Dordrecht, PP. 439–443.