1. Abbasgholipour, M., Omid, M., Keyhani, A. R. and Mohtasebi, S. S. 2011. Color Image Segmentation with Genetic Algorithm in a Raisin Sorting System Based on Machine Vision in Variable Conditions. Expert Syst. Appl., 38: 3671–3678.
2. Afshari-Jouybari, H. and Farahnaky, A. 2011.Evaluation Photoshop Software Potential for Food Colorimetry. J. Food Eng., 106: 170–175.
3. Anonymous. 2010. Countries by Commodity: 2010. Food and Agriculture Organization of the United Nations. FAOSTAT, 2 October 2012, Available at: www.faostat.fao.org.
4. Behroozi Khazaei, N., Tavakoli Hashjin, T., Ghassemian, H., Khoshtaghaza, M. H. and Banakar, A. 2013. Application of Machine Vision in Modeling of Grape Drying Process. J. Agr. Sci. Tech., 15: 1095-1106.
5. Blasco, J., Aleixos, N. and Molto, E. 2003. Machine Vision System for Automatic Quality Grading Fruit. Biosyst. Eng., 85: 415–423.
6. Brosnan, T. and Sun, D. W. 2003. Improving Quality Inspection Food Products by Computer Vision: A Review. J. Food Eng., 61: 3–16.
7. Du, C. J. and Sun, D. W. 2006. Learning Techniques Used in Computer Vision for Food Quality Evaluation: A Review. J. Food Eng., 72: 39–55.
8. Fadilah, N., Mohamad-Saleh, J., Abdul Halim, Z., Ibrahim, H. and Syed Ali, S.S. 2012. Intelligent Color Vision System for Ripeness Classification of Oil Palm Fresh Fruit Bunch. Sensors. 12: 14179-14195.
9. Fils-Lycaon, B. and Buret, M. 1990. Loss Firmness and Changes in Pectic Fractions during Ripening and Over-ripening of Sweet Cherry. J. Am. Soc. Hortic. Sci., 25: 777-778.
10. Fu, L., Okamoto, H., Kataoka, T. and Shibata, Y. 2011.Colorbased Classification for Berries Japanese Blue Honeysuckle. Int. J. Food Eng., 7: 1-12.
11. Huber, D. J. 1983. The Role Cell Wall Hydrolyses in Fruit Softening. Hortic. Rev., 5: 169–219.
12. Iqbal, A., Valous, N. A., Mendoza, F., Sun, D. W. and Allen, P. 2010. Classification Presliced Pork and Turkey Ham Qualities Based on Image Color and Textural Features and Their Relationships with Consumer Responses. Meat Sci., 84: 455–465.
13. Kılıç, K., Onal-Ulusoy, B., Yıldırım, M. and Boyacı, I. H. 2007. Scanner-based Color Measurement in Lab Format with Artificial Neural Networks (ANN). Eur. Food Res. Technol., 226: 121–126.
14. MATLAB R2009a, Matlab user’s guide. The MathWorks Inc., Massachusetts, USA: Natick, 2009.
15. Mollazade, K., Omid, M. and Arefi, A., 2012. Comparing Data Mining Classifiers for Grading Raisins Based on Visual Features. Comput. Electron. Agr., 84: 124–131.
16. Momenzadeh, L., Zomorodian, A. and Mowla, D. 2012.Applying Artificial Neural Network for Drying Time Prediction of Green Pea in a Microwave Assisted Fluidized Bed Dryer. J. Agr. Sci. Tech., 14: 513-522.
17. Omid, M., Khojastehnazhand M. and Tabatabaeefar, A. 2010a. Estimating Volume and Mass Citrus Fruits by Image Processing Technique. J. Food Eng., 100: 315–321.
18. Omid, M., Mahmoudi A. and Omid, M. H. 2010b. Development Pistachio Sorting System Using Principal Component Analysis (PCA) Assisted Artificial Neural Network (ANN) Impact Acoustics. Expert Syst. Appl., 37: 7205–7212.
19. Otsu, N. 1979. A Threshold Selection Method from Gray-level Histograms. IEEE Transactions Systems, Man, Cybernetics, 9: 62–66.
20. Pedreschi, F., Leόn, J., Mery, D. and Moyano, P. 2006. Development of a Computer Vision System to Measure the Color Potato Chips. Food Res. Int., 39: 1092–1098.
21. Polder, G., van der Heijden, G.W. A. M. and Young, I. T. 2003. Tomato Sorting Using Independent Component Analysis on Spectral Images. Real-Time Imaging, 9: 253–259.
22. Taghadomi-Saberi, S., Omid, M., Emam-Djomeh, Z. and Ahmadi, H. 2014. Evaluating the Potential of Artificial Neural Network and Neuro-fuzzy Techniques for Estimating Antioxidant Activity and Anthocyanin Content of Sweet Cherry during Ripening by Using Image Processing. J. Sci. Food Agric., 94: 95–101.
23. Serrano, M., Guillean, F., Martı´nez-Romero, D., Castillo, S. and Valero, D. 2005. Chemical Constituents and Antioxidant Activity of Sweet Cherry at Different Ripening Stages. J. Agric. Food Chem., 53: 2741-2745.
24. Serrano, M., Guillean, F., Martı´nez-Romero, D., Castillo, S. and Valero, D. 2005. Chemical Constituents and Antioxidant Activity of Sweet Cherry at Different Ripening Stages. J. Agr. Food Chem., 53: 2741-2745.
25. Taghadomi-Saberi, S., Omid, M., Emam-Djomeh, Z. and Ahmadi, H. 2013. Estimation of Sweet Cherry Antioxidant Activity and Anthocyanin Content during Ripening by Artificial Neural Network–assisted Image Processing Technique. Int. J. Food Sci. Technol., 48: 735–741.
26. Unay, D., Gosselin, B., Kleynen, O., Leemans, V., Destain, M. F. and Debeir, O. 2011. Automatic Grading Bi-colored Spples by Multispectral Machine Vision. Comput. Electron. Agr., 75: 204–212.
27. Valadez-Blanco, R., Virdi, I. S., Balke, S. T. and Diosady, L. L. 2007. In-line Color Monitoring during Food Extrusion: Sensitivity and Correlation with Product Color. Food Res. Int., 40: 1129–1139.
28. Venora, G., Grillo, O. and Saccone, R. 2009. Quality Assessment of Durum Wheat Storage Centres in Sicily: Evaluation Vitreous, Starchy and Shrunken Kernels Using an Image Analysis System. J. Cereal Sci., 49: 429–440.
29. Wu, J. and Chan, J. 2009. Faulted Gear Identification of a Rotating Machinery Based on Wavelet Transform and Artificial Neural Network. Expert Syst. Appl., 36: 8862-8875.
30. Yam, K. L., and Papadakis, S. E. 2004. A Simple Digital Imaging Method for Measuring and Analyzing Color Food Surfaces. J. Food Eng., 61: 137–142.
31. Yoshida, K., Ito, D., Shinkai, Y. and Kondo, T., 2008. Change Color and Components in Sepalschameleon Hydrangea during Maturation and Senescence. Phytochem., 69: 3159–3165.
32. Zhou, T., Harrison, A. D., McKellar, R., Young, J. C., Odumeru J., Piyasena, P., Lu, X., Mercer, D. G. and Karr, S. 2004. Determination Acceptability and Shelf Life Ready-to-use Lettuce by Digital Image Analysis. Food Res. Int., 37: 875–881.