1. Bellamy, W., Takase, M., Yamauchi, K., Wakabayashi, H., Kawase, K. and Tomita, M. 1992. Identification of the Bactericidal Domain of Lactoferrin. Biochim. Biophys. Acta., 1121: 130–136.
2. Benkerroum, N. 2010. Antimicrobial Peptides Generated from Milk Proteins a Survey and Prospects for Application in the Food Industry. Int. J. Dairy. Technol., 63: 320-338.
3. Boziaris, I. S. and Adams, M. R. 1999. Effect of Chelators and Nisin Produced In situ on Inhibition and Inactivation of Gram Negatives. Int. J. Food. Microbiol., 53:105-113.
4. Brew, K. and Grobler, J. A. 1992. α-Lactalbumin. In: ״ Advanced dairy chemistry: Proteins״ , (Ed.): Fox, P. F.. Elsevier Applied Science Publishers, London, PP. 191-229.
5. Chaneton, L., Pérez Sáez, J. M. and Bussmann, L. M. 2011. Antimicrobial Activity of Bovine β-Lactoglobulin against Mastitis-causing Bacteria. J. Dairy. Sci., 94:138–145.
6. Chatterton, D. E. W., Smithers, G., Roupas, P. and Brodkorb, A. 2006. Bioactivity of β-lactoglobulin and α-lactalbumin Technological Implications for Processing. Int. Dairy. J., 16: 1229–1240.
7. Chen, J. H. and Ledford, R. A. 1971. Purification and Characterization of Milk Protease. J. Dairy. Sci., 54:763.
8. Dalasgaard, T. K., Heegaard, C. W. and Larsen, L. B. 2008. Plasmin Digestion of Photooxidized Milk Proteins. J. Dairy. Sci., 91: 2175- 2183.
9. El-Zahar, K., Sitohy, M., Choiset, Y., Metro, F., Haertle, T. and Chobert, J. M. 2004. Antimicrobial Activity of Ovine Whey Protein and Their Peptic Hydrolysates. Milchwissenschaft., 59: 653–656.
10. Farouk, A., 1982. Antibacterial Activity of Proteolytic Enzymes. Int. J. Pharm., 12: 295-298.
11. Fitzgerald, R. J., Murray, B. A. and Walsh, D. J. 2004. Hypotensive Peptides from Milk Proteins. J. Nutri., 134: 980S–988S.
12. Floris, R., Recio, I., Berkhout, B. and Visser, S. 2003. Antibacterial and Antiviral Effects of Milk Proteins and Derivatives Thereo. Curt. Pharm. Design., 9: 1257-1275.
13. Fox, P. F., 1991. Proteinase. In: ״Food Enzymology״, (Ed.): Fox, P. F.. Elsevier Applied Science, New York, PP. 79-88.
14. Ganzle, M. G., Hertel, C. and Hammes, W. P. 1999. Resistance of Escherichia coli and Salmonella against Nisin and Curvacin A. Int. J. Food. Microbiol., 48: 37–50.
15. Guo, M. R., Fox, P. F., Flynn, A. and Kindstedt, P. S. 1995. Susceptibility of Beta-lactoglobulin and Sodium Caseinate to Proteolysis by Pepsin and Trypsin. Food. Chem., 78: 2336-2244.
16. Hancock, R. E. W. and Lehrer, R. 1998. Cationic Peptides: A New Source of Antibiotics. Trends. Biotechnol., 16: 82-88.
17. Heike, B. and Sahl, H. G. 2000. New Insights in to the Mechanism of Action of Lantibiotics-diverse Biological Effects by Binding to the Same Molecular Target. J. Antimicrob. Chemother., 46: 1-6.
18. Hernández-Ledesma, B., Recio, I. and Amigo, L. 2008. Beta-lactoglobulin as Source of Peptides. Amino. Acids., 35: 257-65.
19. Kordel, M., Schuller, F. and Sahl, H. G. 1989. Interaction of the Pore Forming-peptide Antibiotics Pep 5, Nisin and Subtilin with Non-energized Liposomes. FEBS Lett., 244: 99-102.
20. Korhonen, H. and Pihlanto-Leppälä, A. 2004. Milk-derived Bioactive Peptides: Formation and Prospects for Health Promotion. In: ״Handbook of Functional Dairy Products״, (Eds.): Shortt, C. and Brien, J. O.. CRC Press, Boca Raton, FL, PP. 109 – 124.
21. Lopez-Exposito, I. and Recio, I. 2006. Antibacterial Activity of Peptides and Folding Variants from Milk Proteins. Int. Dairy. J., 16: 1294–1305.
22. McCann, K. B., Shiell, B. J., Michalski, W. P., Lee, A., Wan, J., Roginski, H. and Coventry, M. J. 2006. Isolation and Ccharacterization of a Novel Antibacterial Peptide from Bovine αS1-casein. Int. Dairy. J., 16: 316–323.
23. Mortazavian, A. M. and Sohrabvandi, S. 2006. Probiotic Products. In: ״Probiotics and Food Probiotic Products Based on Dairy Probiotic Products״, (Ed.): Mortazavian, A. M.. Eta Publication, Tehran, PP. 330-372
24. Pakkanen, R. and Aalto, J. 1997. Growth Factors and Antimicrobial Factors of Bovine Colostrum. Int. Dairy. J., 7: 285–297.
25. Park, Y. W. 2009. Overview of Bioactive Components in Milk and Dairy Products. In: ״Bioactive Components in Milk and Dairy Products״, (Ed.): Park, Y. W.. Wiley-Blackwell, Ames, Iowa, USA, PP. 3-5.
26. Pellegrini, A., Thomas, U., Bramaz, N., Hunziker, P. and von Fellenberg, R. 1999. Isolation and Identification of Three Bactericidal Domains in the Bovine α-lactalbumin Molecule. Biochim. Biophys. Acta., 1426: 439–448.
27. Pellegrini, A., Dettling, C., Thomas, U. and Hunziker, P. 2001. Isolation and Characterization of Four Bactericidal Domains in the β-lactoglobulin. Biochim. Biophys. Acta., 1526: 131–140.
28. Pihlanto-Leppala, A., Marnila, P., Hubert, L., Rokka, T., Korhonen, H. J. and Karp, M. 1999. The Effect of α-lactalbumin and β-lactoglobulin Hydrolysates on the Metabolic Activity of Escherichia coli JM103. J. Appl. Microbiol., 87: 540–545.
29. Schmidt, D. G. and Poll, J. K. 1991. Enzymatic Hydrolysis of Whey Proteins. Hydrolysis of α-lactalbumin and β-lactoglobulin in Buffer Solutions by Proteolytic Enzymes. Neth. Milk. Dairy. J., 45: 225–240.
30. Sternhagen, L. G. and Allen, J. C. 2001. Growth Rates of a Human Colon Adenocarcinoma Cell Line Are Regulated by the Milk Protein α-lactalbumin. Adv. Exp. Med. Biol., 501: 115–120.
31. Thompson, A., Boland, J. M. and Singh, H. 2009. Milk Proteins: From Expression to Food. Amsterdam, Elsevier Academic Press, New York, PP. 25-32.
32. Vongsawasdi, P., Nopharatana, M., Supanivatin, P. and Matthana, P. 2012. Effect of Nisin on the Survival of Staphylococcus aureus Inoculated in Fish Balls. Asian. J. Food. Agro. Ind., 5: 52-60.