1. AOAC. 1984. Official Methods of Analysis. Association of Official Analytical Chemists, Washington.
2. Babetto, A. C., Freire, F. B., Barrozo, M. A. S. and Freire, J. T. 2011. Drying of Garlic Slices: Kinetics and Nonlinearity Measures for Selecting the Best Equilibrium Moisture Content Equation. J. Food Eng., 107: 347-352.
3. Barbosa-Canovas, G. V. and Vega-Mercado, H. 1996. Dehydration of Food. Chapman and Hall, New York.
4. Bell, L. N. and Labuza, T. P. 2000. Moisture Sorption: Practical Aspects of Isotherm Measurements and Use. American Association of Cereal Chemists, St. Paul.
5. Brunauer, S., Deming, L. S., Deming, W. E. and Teller, E. 1940. On a Theory of the Van der Waals Adsorption of Gases. J. Amer. Chem. Soc., 62: 1723-1732.
6. Corzo-Martínez, M., Corzo, N. and Villamiel, M. 2007. Biological Properties of Onions and Garlic. Trends Food Sci. Technol., 18: 609-625.
7. Cui, Z. W., Xu, S. Y. and Sun, D. W. 2003. Dehydration of Garlic Slices by Combined Microwave-vacuum and Air Drying. Drying Technol., 21: 1173-1184.
8. FAOSTAT, (2012) Food and Agricultural Organization of United Nations. Available online at http://faostat.fao.org/. Last access July 2012.
9. Halsey, G. 1948. Physical Adsorption on Non-uniform Surfaces. J. Chem. Phys., 16: 931-937.
10. Henderson, S. M. 1952. A Basic Concept of Equilibrium Moisture. Agric. Eng., 33: 29-32.
11. Iglesias, H. A. and Chirife, J. 1982. Handbook of Food Isotherms: Water Sorption Parameters for Food and Food Components. Academic Press, New York.
12. Mayor, L., Moreira, R., Chenlo, F., and Sereno, A. M. 2005. Water Sorption Isotherms of Fresh and Partially Osmotic Dehydrated Pumpkin Parenchyma and Seeds at Several Temperatures. Euro. Food Res. Technol., 220: 163-167.
13. Makower, B. and Dye, W. B. 1956. Equilibrium Moisture Content and Crystallisation of Amorphous Sucrose and Glucose. J. Agric. Food Chem., 4: 72-77.
14. Moraes, M. A., Rosa, G. S. and Pinto, L. A. A. 2008. Moisture Sorption Isotherms and Thermodynamic Properties of Apple Fuji and Garlic. Int. J. Food Sci. Technol., 43: 1824-1831.
15. Moreira, R., Chenlo, F. and Torres, M. D. 2009. Simplified Algorithm for the Prediction of Water Sorption Isotherms of Fruits, Vegetables and Legumes Based upon Chemical Composition. J. Food Eng., 94: 334-343.
16. Norrish, R. S. 1966. An Equation for the Activity Coefficients and Equilibrium Relative Humidities of Water in Confectionary Syrups. J. Food Technol., 1: 25-39.
17. Palipane, K. B. and Driscoll, R. H. 1992. Moisture Sorption Characteristics of Inshell Macadamia Nuts. J. Food Eng., 18: 63-76.
18. Pezzutti, A. and Crapiste, G. H. 1997. Sorptional Equilibrium and Drying Characteristics of Garlic. J. Food Eng., 31: 113–123.
19. Pitzer, K. S. 1973. Electron Repulsion Integrals and Symmetry Adapted Charge Distributions. J. Chem. Phys., 59: 3308-3312.
20. Prothon, F. and Ahrne, L. M. 2004. Application of the Guggenheim, Anderson and De Boer Model to Correlate Water Activity and Moisture Content during Osmotic Dehydration of Apples. J. Food Eng., 61: 467–470.
21. Ratti, C., Araya-Farias, M., Mendez-Lagunas, L. and Makhlouf, J. 2007. Drying of Garlic (Allium sativum) and its Effect on Allicin Retention. Drying Technol., 25: 349-356.
22. Roman, A. D., Herman-y-Lara, E., Salgado-Cervantes, M. A. and García-Alvarado, M. A. 2004. Food Sorption Isotherms Prediction using the Ross Equation. Drying Technol., 22: 1829-1843.
23. Sablani, S. S., Rahman, M. S., Al-Kuseibi, M. K., Al-Habsi, N. A., Al-Belushi, R. H., Al-Marhubi, I. and Al-Amri, I. S. 2007. Influence of Shelf Temperature on Pore Formation in Garlic during Freeze-drying. J. Food Eng., 80: 68-79.
24. Salgado, M. A., Garcia, M. A. and Waliszewski, K. N. 1994. Modeling of Water Activity and Enthalpy of Water Sorption in Cassava Chips. Drying Technol., 12: 1743-1752.
25. Sereno, A. M., Moreira, R. and Martinez, E. 2001. Mass Transfer Coefficients during Osmotic Dehydration of Apple in Single and Combined Aqueous Solutions of Sugar and Salt. J. Food Eng., 47: 43–49.
26. Shamaei, S., Emam-djomeh, Z. and Moini, S. 2012. Modeling and Optimization of Ultrasound Assisted Osmotic Dehydration of Cranberry Using Response Surface Methodology. J. Agr. Sci. Technol., 14, 1523-1534.
27. Sharma, G. P., Prasad, S. and Chahar, V. K. 2009. Moisture Transport in Garlic Cloves Undergoing Microwave-convective Drying. Food Bioprod. Process., 87: 11-16.
28. Singh, B., Panesar, P. S., Gupta, A. K. and Kennedy, J. F. 2006. Sorption Isotherm Behavior of Osmoconvectively Dehydrated Carrot Cubes. J. Food Process. Preser., 30: 684-698.
29. Souci, S. W., Fachmann, W. and Kraut, H. 2000. Food Composition and Nutrition Tables. Medpharm Scientific Publishers, CRC Press, London.
30. Vazquez, G., Chenlo, F., Moreira, R. and Costoyas, A. 1999a. The Dehydration of Garlic. 2. The Effects of Pretreatments on Drying Kinetics. Drying Technol., 17: 1109-1120.
31. Vazquez, G., Chenlo, F., Moreira, R. and Costoyas, A. 1999b. The Dehydration of Garlic. 1. Desorption Isotherms and Modelling of Drying Kinetics. Drying Technol., 17: 1095-1108.
32. Wolf, W., Spiess, W. E. L. and Jung, G. 1985. Standardization of Isotherm Measurements (Cost Project 90 and 90 bis). In: “Properties of Water in Foods”, (Eds.): Simatos, D. and Multon, J. L.. Dordrecht, Martinus Nijhoff, PP. 661–679.