1. Bahagiawati, A., Shade, R. E., Koiwa, H., Hasegawa, P. M., Bressan, R. A., Murdock, L. L. and Zhu-Salzman, K. 2007. Protease Inhibitors from Several Classes Work Synergistically Against Callosobruchus maculatus. J. Insect Physiol., 53(7): 734-740.
2. Broadway, R. M. and Colvin, A. A. 1992. Influence of Cabbage Proteinase Inhibitors in Situ on the Growth of Larval Trichoplusia niand, Pieris rapae. J. Chem. Ecol., 18:1009-1024.
3. Caldeira, W., Dias, A. B., Terra, W. R. and Ribeiro, A. F. 2007. Digestive Enzyme Compartmentalization and Recycling and Sites of Absorption and Secretion along the Midgut of Dermestes maculatus (Coleoptera) Larvae. Arch. Insect Biochem. Physiol., 64(1): 1-18.
4. Castro-Guillén, J. L., Mendiola-Olaya, E., García-Gasca, T. and Blanco-Labra, A. 2012. Partial Characterization of Serine Peptidases in Larvae of Prostephanus truncates (Horn) (Coleoptera: Bostrichidae), Reveals Insensitive Peptidases to Some Plant Peptidase Inhibitors. J. Stored Prod. Res., 50: 28-35.
5. Connors, B. J., Laun, N. P., Maynard, C. A. and Powell, W. A. 2002. Molecular Characterization of Gene Encoding a Cystatin Expressed in the Stems of American Chestnut (Castanea dentate). Planta, 215: 510-514.
6. Ferrasson, E., Quillien, L. and Gueguen, J. 1997. Proteinase Inhibitors from Pea Seeds: Purification and Characterization. J. Agric. Food Chem., 45: 127-131.
7. Franco, O. L., Dias, S. C., Magalhaes, C. P., Bloch Jra, A. C. S. M., Melo, F. R., Oliveira-Neto, O. B., Monnerata, R. G. and Grossi-de-Sa, M. F. 2004. Effects of Soybean Kunitz Trypsin Inhibitor on the Cotton Boll Weevil (Anthonomus grandis). Phytochem., 65: 81–89.
8. George, D., Ferry, N., Back, E. J. and Gatehouse, A. M. R. 2008. Characterization of Midgut Digestive Proteases from the Maize Stem Borer Busseola fusca. Pest Manag. Sci., 64:1151-1158.
9. Ghodkea, A. B., Chavana, S. G., Sonawanea, B. V. and Bharosea, A.A. 2013. Isolation and in Vitro Identification of Proteinase Inhibitors from Soybean Seeds Inhibiting Helicoverpa Gut Proteases. J. Plant Interact. 88(2):170-178.
10. Gomes, C. E., Barbosa, A. E., Macedo, L. L., Pitanga, J. C., Moura, F. T., Oliveira., A. S., Moura, R. M., Queiroz., A. F., Macedo, F. P., Andrade, L. B., Vidal, M. S. and Sales, M. P. 2005. Effect of Trypsin Inhibitor from Crotalaria pallidaseeds on Callosobruchus maculatus (Cowpea Weevil) and Ceratitis capitata (Fruit Fly). Plant Physiol. Biochem., 43: 1095-1102.
11. Hosseininaveh, V., Bandani, A., Azmayeshfard, P., Hosseinkhani, S. and Kazzazi, M. 2007. Digestive Proteolytic and Amylolytic Activities in Trogoderma granarium Everts (Dermestidae: Coleoptera). J. Stored Prod. Res., 43: 515–522.
12. Kansal, R., Kumar, M., Kuhar, K., Gupta, R. N., Subrahmanyam, B., Koundal, K.R. and Gupta, V. K. 2008. Purification and Characterization of Trypsin Inhibitor from Cicer arietinum L. and Its Efficacy against Helicoverpa armigera. Braz. J. Plant Phys., 20(4): 313-322.
13. Lecardonnel, A., Chauvin, L., Jouanin, L., Beaujean, A., Prevost, G. and Sangwan-Norreel, B. 1999. Effects of Rice Cystatin I Expression in Transgenic Potato on Colorado Potato Beetle Larvae. Plant Sci., 140: 71–79.
14. Loncar, N., Bozic, N., Nenadovic, V., Ivanovic J. and Vujcic, Z. 2009. Characterization of Trypsin-like Enzymes from the Midgut of Morimus funereus (Coleoptera: Cerambycidae) Larvae. Arch. Biol. Sci., 61(4): 713-718.
15. Lowry, O. H., Rosembrough, N. J., Farr, A. L. and Randdall, R. J. 1951. Protein Measurement with the Folin Phenol Reagent. J. Biol. Chem., 193: 267-275.
16. Macedo, M., Durigan, R., Silva, D., Marangoni, S., Machado, F., Postali, M. and Parra, J. 2010. Adenanthera pavonina Trypsin Inhibitor Retard Growth of Anagasta kuehniella (Lepidoptera: Pyralidae). Arch. Insect Biochem. Physiol., 73: 213-231.
17. Macedo, M. L. R., Mello, G. C., Freire, M. G. M., Novello, J. C., Marangoni, S. and de Matos, D. G. G. 2002. Effect of a Trypsin Inhibitor from Dimorphandra mollisseedsbon the Development of Callosobruchus maculatus. Plant Physiol. Biochem., 40:891–898.
18. Marshall, S. D. G., Gatehouse, L. N., Becher, S. A., Christeller, J. T., Gatehouse, H. S., Hurst, M. R. H. and Jackson, T. A. 2008. Serine Proteases Identified from a Costelytra zealandica (White) (Coleoptera: Scarabaeidae) Midgut EST Library and Their Expression through Insect Development. Insect Mol. Biol., 17(3): 247-259.
19. Mikola. M. and Mikkonen, A. 1999. Occurrence and Stabilities of Oat Trypsin and Chymotrypsin Inhibitors. J. Cereal Sci., 30:227-235.
20. Mochizuki, A. 1998. Characteristics of Digestive Proteases in the Gut of Some Insect Orders. Appl. Entomol. Zool., 33:401-408.
21. Mohammadpour, K. and Avandfaghih, A. 2007. Investigation on the Possibility of Co-mass Trapping of the Populations of Red Palm Weevil, Rhynchophorus ferrugineus and Date Palm Fruit Stalk Borer, Oryctes elegans Using Pheromone Traps. Appl. Entomol. Phytopathol., 75(2): 39-53. (in Persian)
22. Murphy, S. T. and Briscoe, B. R. 1999. The Red Palm Weevil as an Alien Invasive: Biology and the Prospects for Biological Control as a Component of IPM. Biocontrol News Information, 20(1): 35– 46.
23. Oliveira, A. S., Pereira, R. A., Lima, L. M., Morais, A. A. H., Melo, F. R., Franco, O. L., Bloch, J. R. C., Grossi-de-Sa, M. and Sales, M. P. 2002. Activity toward Bruchid Pest of a Kunitz-type Inhibitor from Seeds of the Algaroba Tree (Prosopis juliflora DC). Pestic. Biochem. Physiol., 72: 122-132.
24. Oppert, B., Elpidina, E. N., Toutges, M. and Mazumdar-Leighton, S. 2010. Microarray Analysis Reveals Strategies of Tribolium castaneum Larvae to Compensate for Cysteine and Serine Protease Inhibitors. Comp. Biochem. Phys., 5(4): 280-287.
25. Osuna-Amarillas, P. S. O., Cinco-Moroyoqui, F. J., Cárdenas-López, J. L., Ezquerra-Brauer, J. M., Sotelo-Mundo, R., Cortez-Rocha, M. O., Barrón-Hoyos, J. M., Rouzaud-Sández, O. and Borboa-Flores, J. 2012. Biochemical and Kinetic Characterization of the Digestive Trypsin-like Activity of the Lesser Grain Borer Rhyzopertha dominica (F.) (Coleoptera: Bostrichidae). J. Stored Prod. Res., 51: 41-48.
26. Rai, S., Aggarwal, K. K. and Babu, C. R. 2008. Isolation of a Serine Kunitz Trypsin Inhibitor from Leaves of Terminalia arjuna. Curr. Sci., 94(11): 1509-1512.
27. Sharifi, M., Gholamzadeh Chitgar, M., Ghadamyari, M. and Ajamhasani, M. 2012. Identification and Characterization of Midgut Digestive Proteases from Rosaceous Branch Borer, Osphranteria coerulescens (Coleoptera: Cerambycidae). Rom. J. Biochem., 49 (1): 33-47.
28. Talebi, K., Hosseininaveh, V. and Ghadamyari M. 2011. Ecological Impacts of Pesticides in Agricultural Ecosystem. Pesticides in the Modern World-risks and Benefits. (Ed.): Stoytcheva, M., In Tech publisher, Rijeka, Croatia, 560 PP.
29. Torres-Castillo J.A., Jacobo C.M. and Blanco-Labra, A. 2009. Characterization of a Highly Stable Trypsin-like Proteinase Inhibitor from the Seeds of Opuntia streptacantha (O. streptacantha Lemaire). Phytochem., 70(11–12): 1374–1381.
30. Ussuf, K. K., Laxmi, N. H. and Mitra, R. 2001. Proteinase Inhibitors: Plant-derived Genes of Insecticidal Protein for Developing Insect-resistant Transgenic Plants. Curr. Sci. Bangalore, 80(7): 847-853.
31. Vinokurov, K. S, Elpidina, E. N., Zhuzhikov, D. P., Oppert, B., Kodrik, D. and Sehnal, F. 2009. Digestive Proteolysis Organization in Two Closely Related Tenebrionid Beetles: Red Flour Beetle (Tribolium castaneum) and Confused Flour Beetle (Tribolium confusum). Arch. Insect Biochem. Physiol., 70: 254-279.
32. Vinokurov, K. S., Oppert, B. and Elpidina, E. N. 2005. An overlay Technique for Postelectrophoretic Analysis of Proteinase Spectra in Complex Mixtures Using P-nitroanilide Substrates. Anal. Biochem., 337: 164-166.
33. Volpicella, M., Ceci, L. R., Cordewener. J., America, T., Gallerani, R., Bode, W., Jongsma, M. A. and Beekwilder, J. 2003. Properties of Purified Gut Trypsin from Helicoverpa zea Adapted to Proteinase Inhibitors. Eur. J. Biochem., 270: 10-19.
34. Wolfson, J. L. and Murdock, L. L. 1990. Diversity in Digestive Proteinase Activity among Insects. J. Chem. Ecol., 16(4): 1089-1102.
35. Zhang, H. and Brune, A. 2004. Characterization and Partial Purification of Proteinases from the Highly Alkaline Midgut of the Humivorous Larvae of Pachnoda ephippiata (Coleoptera: Scarabaeidae). Soil Biol. Biochem., 36: 435-442.