Effect of Inhibitors from Plant Seeds on Digestive Proteolytic Activities in Larvae of the Date Palm Fruit Stalk Borer, Oryctes elegans Prell (Coleoptera: Scarabaeidae)

Authors
1 Department of Plant Protection, Faculty of Agricultural Sciences, University of Guilan, Rasht, Islamic Republic of Iran.
2 Department of Plant Protection, College of Agriculture and Natural Resources, University of Tehran, Karaj, Islamic Republic of Iran.
3 Agricultural and Natural Resources Research Center of Southern Khorasan, Birjand, Islamic Republic of Iran.
Abstract
The date palm fruit stalk borer is one of the most important pests of date palm in the world. Biochemical properties of digestive proteases in Oryctes elegans Prell larvae were investigated in this research and optimal total proteolytic and trypsin activities were obtained at pH 9.0 and 11.0, respectively. Activity staining of protease on SDS-PAGE showed one isoform. Also, zymogram pattern of trypsin using nitro-cellulose membrane revealed two isoforms. The inhibitory effect of PMSF, TLCK, TPCK, EDTA, iodoacetate and iodoacetamide were determined on O. elegans proteolytic activity. The iodoacetamide showed the highest inhibition on total proteolytic activity. Therefore, cysteine protease accounted for the major proteases in the gut of O. elegans. Total proteolytic activity was inhibited 22.3 and 12.15% by inhibitors extracted from Vicia faba and Lathyrus sativus, respectively. However, the inhibitors extracted from seeds of Prosopis farcta, Panecum miliaceum, and Alhagi maurorum showed negligible inhibitory effects on proteolytic activities. Trypsin activity was inhibited 91.5 and 82.3% by inhibitors extracted from V. faba and L. sativus, respectively. Electrophoretic analysis showed that inhibitors extracted from V. faba reduced the intensity of total proteolytic and trypsin activities. The inhibitor from V. faba was purified by ammonium sulfate precipitation and gel-filtration, also the molecular mass of inhibitor was determined 35 kDa. This purified inhibitor was able to inhibit trypsin activity by 72.7%. In addition, the highest inhibition of trypsin activity by inhibitor from V. faba occurred at pH 11.0. Also, the stability of inhibitor from V. faba was evaluated at different pHs and temperatures. This inhibitor was stable at pH 11.0 and 30 °C.

Keywords


1. Bahagiawati, A., Shade, R. E., Koiwa, H., Hasegawa, P. M., Bressan, R. A., Murdock, L. L. and Zhu-Salzman, K. 2007. Protease Inhibitors from Several Classes Work Synergistically Against Callosobruchus maculatus. J. Insect Physiol., 53(7): 734-740.
2. Broadway, R. M. and Colvin, A. A. 1992. Influence of Cabbage Proteinase Inhibitors in Situ on the Growth of Larval Trichoplusia niand, Pieris rapae. J. Chem. Ecol., 18:1009-1024.
3. Caldeira, W., Dias, A. B., Terra, W. R. and Ribeiro, A. F. 2007. Digestive Enzyme Compartmentalization and Recycling and Sites of Absorption and Secretion along the Midgut of Dermestes maculatus (Coleoptera) Larvae. Arch. Insect Biochem. Physiol., 64(1): 1-18.
4. Castro-Guillén, J. L., Mendiola-Olaya, E., García-Gasca, T. and Blanco-Labra, A. 2012. Partial Characterization of Serine Peptidases in Larvae of Prostephanus truncates (Horn) (Coleoptera: Bostrichidae), Reveals Insensitive Peptidases to Some Plant Peptidase Inhibitors. J. Stored Prod. Res., 50: 28-35.
5. Connors, B. J., Laun, N. P., Maynard, C. A. and Powell, W. A. 2002. Molecular Characterization of Gene Encoding a Cystatin Expressed in the Stems of American Chestnut (Castanea dentate). Planta, 215: 510-514.
6. Ferrasson, E., Quillien, L. and Gueguen, J. 1997. Proteinase Inhibitors from Pea Seeds: Purification and Characterization. J. Agric. Food Chem., 45: 127-131.
7. Franco, O. L., Dias, S. C., Magalhaes, C. P., Bloch Jra, A. C. S. M., Melo, F. R., Oliveira-Neto, O. B., Monnerata, R. G. and Grossi-de-Sa, M. F. 2004. Effects of Soybean Kunitz Trypsin Inhibitor on the Cotton Boll Weevil (Anthonomus grandis). Phytochem., 65: 81–89.
8. George, D., Ferry, N., Back, E. J. and Gatehouse, A. M. R. 2008. Characterization of Midgut Digestive Proteases from the Maize Stem Borer Busseola fusca. Pest Manag. Sci., 64:1151-1158.
9. Ghodkea, A. B., Chavana, S. G., Sonawanea, B. V. and Bharosea, A.A. 2013. Isolation and in Vitro Identification of Proteinase Inhibitors from Soybean Seeds Inhibiting Helicoverpa Gut Proteases. J. Plant Interact. 88(2):170-178.
10. Gomes, C. E., Barbosa, A. E., Macedo, L. L., Pitanga, J. C., Moura, F. T., Oliveira., A. S., Moura, R. M., Queiroz., A. F., Macedo, F. P., Andrade, L. B., Vidal, M. S. and Sales, M. P. 2005. Effect of Trypsin Inhibitor from Crotalaria pallidaseeds on Callosobruchus maculatus (Cowpea Weevil) and Ceratitis capitata (Fruit Fly). Plant Physiol. Biochem., 43: 1095-1102.
11. Hosseininaveh, V., Bandani, A., Azmayeshfard, P., Hosseinkhani, S. and Kazzazi, M. 2007. Digestive Proteolytic and Amylolytic Activities in Trogoderma granarium Everts (Dermestidae: Coleoptera). J. Stored Prod. Res., 43: 515–522.
12. Kansal, R., Kumar, M., Kuhar, K., Gupta, R. N., Subrahmanyam, B., Koundal, K.R. and Gupta, V. K. 2008. Purification and Characterization of Trypsin Inhibitor from Cicer arietinum L. and Its Efficacy against Helicoverpa armigera. Braz. J. Plant Phys., 20(4): 313-322.
13. Lecardonnel, A., Chauvin, L., Jouanin, L., Beaujean, A., Prevost, G. and Sangwan-Norreel, B. 1999. Effects of Rice Cystatin I Expression in Transgenic Potato on Colorado Potato Beetle Larvae. Plant Sci., 140: 71–79.
14. Loncar, N., Bozic, N., Nenadovic, V., Ivanovic J. and Vujcic, Z. 2009. Characterization of Trypsin-like Enzymes from the Midgut of Morimus funereus (Coleoptera: Cerambycidae) Larvae. Arch. Biol. Sci., 61(4): 713-718.
15. Lowry, O. H., Rosembrough, N. J., Farr, A. L. and Randdall, R. J. 1951. Protein Measurement with the Folin Phenol Reagent. J. Biol. Chem., 193: 267-275.
16. Macedo, M., Durigan, R., Silva, D., Marangoni, S., Machado, F., Postali, M. and Parra, J. 2010. Adenanthera pavonina Trypsin Inhibitor Retard Growth of Anagasta kuehniella (Lepidoptera: Pyralidae). Arch. Insect Biochem. Physiol., 73: 213-231.
17. Macedo, M. L. R., Mello, G. C., Freire, M. G. M., Novello, J. C., Marangoni, S. and de Matos, D. G. G. 2002. Effect of a Trypsin Inhibitor from Dimorphandra mollisseedsbon the Development of Callosobruchus maculatus. Plant Physiol. Biochem., 40:891–898.
18. Marshall, S. D. G., Gatehouse, L. N., Becher, S. A., Christeller, J. T., Gatehouse, H. S., Hurst, M. R. H. and Jackson, T. A. 2008. Serine Proteases Identified from a Costelytra zealandica (White) (Coleoptera: Scarabaeidae) Midgut EST Library and Their Expression through Insect Development. Insect Mol. Biol., 17(3): 247-259.
19. Mikola. M. and Mikkonen, A. 1999. Occurrence and Stabilities of Oat Trypsin and Chymotrypsin Inhibitors. J. Cereal Sci., 30:227-235.
20. Mochizuki, A. 1998. Characteristics of Digestive Proteases in the Gut of Some Insect Orders. Appl. Entomol. Zool., 33:401-408.
21. Mohammadpour, K. and Avandfaghih, A. 2007. Investigation on the Possibility of Co-mass Trapping of the Populations of Red Palm Weevil, Rhynchophorus ferrugineus and Date Palm Fruit Stalk Borer, Oryctes elegans Using Pheromone Traps. Appl. Entomol. Phytopathol., 75(2): 39-53. (in Persian)
22. Murphy, S. T. and Briscoe, B. R. 1999. The Red Palm Weevil as an Alien Invasive: Biology and the Prospects for Biological Control as a Component of IPM. Biocontrol News Information, 20(1): 35– 46.
23. Oliveira, A. S., Pereira, R. A., Lima, L. M., Morais, A. A. H., Melo, F. R., Franco, O. L., Bloch, J. R. C., Grossi-de-Sa, M. and Sales, M. P. 2002. Activity toward Bruchid Pest of a Kunitz-type Inhibitor from Seeds of the Algaroba Tree (Prosopis juliflora DC). Pestic. Biochem. Physiol., 72: 122-132.
24. Oppert, B., Elpidina, E. N., Toutges, M. and Mazumdar-Leighton, S. 2010. Microarray Analysis Reveals Strategies of Tribolium castaneum Larvae to Compensate for Cysteine and Serine Protease Inhibitors. Comp. Biochem. Phys., 5(4): 280-287.
25. Osuna-Amarillas, P. S. O., Cinco-Moroyoqui, F. J., Cárdenas-López, J. L., Ezquerra-Brauer, J. M., Sotelo-Mundo, R., Cortez-Rocha, M. O., Barrón-Hoyos, J. M., Rouzaud-Sández, O. and Borboa-Flores, J. 2012. Biochemical and Kinetic Characterization of the Digestive Trypsin-like Activity of the Lesser Grain Borer Rhyzopertha dominica (F.) (Coleoptera: Bostrichidae). J. Stored Prod. Res., 51: 41-48.
26. Rai, S., Aggarwal, K. K. and Babu, C. R. 2008. Isolation of a Serine Kunitz Trypsin Inhibitor from Leaves of Terminalia arjuna. Curr. Sci., 94(11): 1509-1512.
27. Sharifi, M., Gholamzadeh Chitgar, M., Ghadamyari, M. and Ajamhasani, M. 2012. Identification and Characterization of Midgut Digestive Proteases from Rosaceous Branch Borer, Osphranteria coerulescens (Coleoptera: Cerambycidae). Rom. J. Biochem., 49 (1): 33-47.
28. Talebi, K., Hosseininaveh, V. and Ghadamyari M. 2011. Ecological Impacts of Pesticides in Agricultural Ecosystem. Pesticides in the Modern World-risks and Benefits. (Ed.): Stoytcheva, M., In Tech publisher, Rijeka, Croatia, 560 PP.
29. Torres-Castillo J.A., Jacobo C.M. and Blanco-Labra, A. 2009. Characterization of a Highly Stable Trypsin-like Proteinase Inhibitor from the Seeds of Opuntia streptacantha (O. streptacantha Lemaire). Phytochem., 70(11–12): 1374–1381.
30. Ussuf, K. K., Laxmi, N. H. and Mitra, R. 2001. Proteinase Inhibitors: Plant-derived Genes of Insecticidal Protein for Developing Insect-resistant Transgenic Plants. Curr. Sci. Bangalore, 80(7): 847-853.
31. Vinokurov, K. S, Elpidina, E. N., Zhuzhikov, D. P., Oppert, B., Kodrik, D. and Sehnal, F. 2009. Digestive Proteolysis Organization in Two Closely Related Tenebrionid Beetles: Red Flour Beetle (Tribolium castaneum) and Confused Flour Beetle (Tribolium confusum). Arch. Insect Biochem. Physiol., 70: 254-279.
32. Vinokurov, K. S., Oppert, B. and Elpidina, E. N. 2005. An overlay Technique for Postelectrophoretic Analysis of Proteinase Spectra in Complex Mixtures Using P-nitroanilide Substrates. Anal. Biochem., 337: 164-166.
33. Volpicella, M., Ceci, L. R., Cordewener. J., America, T., Gallerani, R., Bode, W., Jongsma, M. A. and Beekwilder, J. 2003. Properties of Purified Gut Trypsin from Helicoverpa zea Adapted to Proteinase Inhibitors. Eur. J. Biochem., 270: 10-19.
34. Wolfson, J. L. and Murdock, L. L. 1990. Diversity in Digestive Proteinase Activity among Insects. J. Chem. Ecol., 16(4): 1089-1102.
35. Zhang, H. and Brune, A. 2004. Characterization and Partial Purification of Proteinases from the Highly Alkaline Midgut of the Humivorous Larvae of Pachnoda ephippiata (Coleoptera: Scarabaeidae). Soil Biol. Biochem., 36: 435-442.