Mathematical Modeling of Heat Transfer and Sterilizing Value Evaluation during Caviar Pasteurization

Authors
1 Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology
2 Branch for the Northwest and West Region, Agricultural Biotechnology Research Institute of Iran (ABRII), Tabriz, I. R. Iran.
3 Iranian Fisheries Research Organization, Tehran 141556116, I.R. Iran.
4 Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan 84156, I. R.Iran.
Abstract
In this study, a numerical model was developed to investigate the two-dimensional heat transfer in a homogenous finite cylinder to predict the local temperature and sterilizing value during caviar pasteurization. A fixed grid finite difference method was used in the solution of heat transfer equations according to Crank-Nicolson’s scheme. The model was validated by comparison of the experimental temperature profiles during caviar pasteurization with the model predicted values (Correlation Coefficient> 0.99 and Root Mean Square Errors< 0.61ºC). The cold spot location was at the radial center between the middle and top of the jar on the vertical axis. For caviar pasteurization, the required heating time for cold spot to reach the desired F-value (= 0.19 min) was 128 minutes at 55°C and 37.63 minutes at 65°C. The results indicated that the developed model could be successfully applied to simulate the caviar thermal processing.

Keywords


1. Akterian, S. G. 1995. Numerical Simulation of Unsteady Heat Transfer in Canned Mushrooms in Brine during Sterilization Processes. J. Food Eng., 25: 45-53.
2. Al-Holy, M., Quinde, Z., Guan, D., Tang, J. and Rasco, B. 2004. Thermal Inactivation of Listeria innocua in Salmon (Oncorhynchus keta) Caviar Using Conventional Glass and Novel Aluminum Thermal-Death-Time Tubes. J. Food Prot., 67(2): 383-386.
3. Al-Holy, M. and Rasco, B. 2006. Characterization of Salmon (Oncorhynchus keta) and sturgeon (Acipenser transmontanus) Caviar proteins. J. Food Biochem., 30(4): 422-428.
4. Al-Holy, M., Wang, Y. F., Tang, J. and Rasco, B. 2005. Dielectric Properties of Salmon (Oncorhynchus keta) and Sturgeon (Acipenser transmontanus) Caviar at Radio Frequency (RF) and Microwave (MW) Pasteurization Frequencies. J. Food Eng., 70(4): 564-570.
5. Altug, G. and Bayrak, Y. 2003. Microbiological Analysis of Caviar from Russia and Iran. Food Microbiol., 20: 83-86.
6. A.O.A.C. 1990. Official methods of analysis. (15th Ed.). Association of Official Analytical Chemists, Washington, DC.
7. Augusto, P. E. D., Pinheiro, T. F., Tribst, A. A. L. and Cristianini, M. 2009. Evaluation of Methodologies for Mathematical Modeling of Packaged Conductive Foods Heat Process. Int. J. Food Eng., 5(4).
8. Bledsoe, G. E., Bledsoe, C. D. and Rasco, B. A. 2003. Caviar and Fish Roe Products. Crit. Rev. Food Sci. Nutr., 43(3): 317-356.
9. Caprino, F., Moretti, V. M., Bellagambaa, F., Turchini, G. M., Busettoa, M. L., Giani, I., Paleari, M. A. and Pazzaglia, M. 2008. Fatty Acid Composition and Volatile Compounds of Caviar from Farmed White Sturgeon (Acipenser transmontanus). Anal. Chim. Acta., 617: 139-147.
10. Chen, C. R. and Ramaswamy, H. S. 2007. Visual Basics Computer Simulation Package for Thermal Process Calculations. Chem. Eng. Process., 46: 603-613.
11. Creed, P. G. and James, S. J. 1985. Heat Transfer during the Freezing of Liver in a Plate Freezer. J. Food Sci., 50(2): 285-294.
12. Dalvi, M. and Hamdami, N. 2011. Characterization of Thermophysical Properties of Iranian Ultrafiltrated White Cheese: Measurement and Modeling. J. Agr. Sci. Tech., 13: 67-78.
13. Duyar, H. A., Oeoretmen, Y. O. and Ekici, K. 2008. The Chemical Composition of Waxed Caviar and the Determination of Its Shelf Life. J. Anim. Vet. Adv., 7(8): 1029-1033.
14. Ghani, A. G. A., Farid, M. M., Chen, X. D. and Richards, P. 1999. Numerical Simulation of Natural Convection Heating of Canned Food by Computational Fuid Dynamics. J. Food Eng., 41: 55-64.
15. Incropera, F. P. and De Witt, D. P. 1990. Fundamentals of Heat and Mass Transfer. John Wiley and Sons Inc., New York, PP.345
16. Jelodar, A. S. and Safari, R. 2006. Microbial and Chemical Quality Evaluation of Caviar in Iranian Processing Plants in Line with the European Community Code. J. Appl. Ichthyol., 22: 411-415.
17. Johannesson, J. 2006. Lumpfish Caviar, from Vessel to Consumer. In FAO Fisheries Technical Paper (FAO), (No. 485/FAO), Fishery Industries Div., Rome.
18. Kızıltas, S., Erdogdu, F. and Koray Palazoglu, T. 2010. Simulation of Heat Transfer for Solid–Liquid Food Mixtures in Cans and Model Validation under Pasteurization Conditions. J. Food Eng., 97, 449-456.
19. Mohamed, I. O. 2007. Determination of an Effective Heat Transfer Coefficients for Can Headspace during Thermal Sterilization Process. J. Food Eng., 79: 1166-1171.
20. Mohsenin, N. 1980. Thermal Properties of Foods and Agricultural Materials. CRC Press, New York, PP.55-65.
21. Ozisik, M. N. 1985. Heat Transfer: A Basic Approach. Mc Graw-Hill Book Company, New York, PP.470.
22. Patankar, S. V. 1980. Numerical Heat Transfer and Fluid Flow. Hemisphere Publishing Corporation, Washington, PP. 126-134.
23. Plazl, I., Lakner, M. and Koloini, T. 2006. Modeling of Temperature Distributions in Canned Tomato Based Dip during Industrial Pasteurization. J. Food Eng., 75: 400-406.
24. Puri, V. M. and Anantheswaran, R. C. 1993. The Fnite-element Method in Food Processing: A Review. J. Food Eng., 19: 247-274.
25. Rezvani Gilkolaei, S. 2002. DNA PCR Amplification for Species Diagnosis of Caviar from Caspian Sea Sturgeon. J. Agr. Sci. Tech., 4: 51-61.
26. Singh, R. P. 1992. Heating and Cooling Processes for Foods. In: “Handbook of Food Engineering”, (Eds.): D. R. Heldman and D. B. Lund. Marcel Dekker, New York, PP. 247-276.
27. Sternin, V. and Dore, I. 1993. Caviar: The Resource Book. Cultura Enterprises, Washington, PP.159.
28. Toledo, R. T. 2007. Fundamentals of Food Process Engineering. 3rd Edition, Springer, New York, 14, 408-423.
29. Wang, L. and Sun, D. 2003. Recent Developments in Numerical Modelling of Heating and Cooling Processes in the Food Iindustry: A Review. Trends Food Sci. Technol., 14: 408-423.
30. Wang, W., Batterman, S., Chernyak, S. and Nriagu, J. 2008. Concentrations and Risks of Organic and Metal Contaminants in Eurasian Caviar. Ecotox. Environ. Safe., 71: 138-148.
31. Yan, Z., Sousa-Gallagher, M. J. and Oliveira, F. A. R. 2008. Shrinkage and Porosity of Banana, Pineapple and Mango Slices during Air-drying. J. Food Eng., 84(3): 430-440.