1. Ashofteh Beiragi, M., Ebrahimi, M., Mostafavi, K., Golbashy, M. and Khavari Khorasani, S. 2011. A Study of Morphological Basis of Corn (Zea mays L.) Yield under Drought Stress Condition Using Correlation and Path Coefficient Analysis. J. Cereals Oilseeds, 2: 32-37.
2. Azadeh, A., Ghaderi, S. F. and Sohrabkhani, S. 2008. A Simulated-based Neural Network Algorithm for Forecasting Electrical Energy Consumption in Iran. Energy Pol., 36: 2637– 2644.
3. Dai, X., Huo, Z. and Wang, H. 2011. Simulation for Response of Crop to Soil Moisture and Salinity with Artificial Neural Network. Field Crops Res., 121: 441-449.
4. Erdal, G., Esengun, K., Erdal, H. and Gunduz, O. 2007. Energy Use and Economical Analysis of Sugarbeet Production in Tokat Province of Turkey. Energy, 32: 35- 41.
5. Esengun, K., Gundoz, O. and Erdal, G. 2007. Input-output Energy Analysis in Dry Apricot Production of Turkey. Energy Convers. Manage., 48: 592-598.
6. Houshyar, E., Azadi, H., Almassi, M. and Sheikh Davoodi, M. J. 2012. Sustainable and Efficient Energy Consumption of Corn Production in Southwest Iran: Combination of Multi-fuzzy and DEA Modeling. Energy, 44: 672-681.
7. Jiu Quan, Z., Ling Xiap, Z., Ming Hua, Z. and Watson, C. 2009. Prediction of Soybean Growth and Development Using Artificial Neural Network and Statistical Models. Acta Agronomica Sinica, 35: 341-347.
8. Kaul, M., Hill, R. L. and Walthall, C. 2005. Artificial Neural Networks for Corn and Soybean Yield Prediction. Agr. Systems, 85: 1-18.
9. Khashei-Siuki A., Kouchakzadeh, M. and Ghahraman, B. 2011. Predicting Dryland Wheat Yield from Meteorological Data Using Expert System, Khorasan Province, Iran. J. Agr. Sci. Tech., 13: 627-640.
10. Kitani, O. 1999. CIGR Handbook of Agricultural Engineering. Energy and Biomass Engineering, ASAE Publication, 5: 13-24.
11. McCulloch, W.S. and Pitts, W. 1943. A Logical Calculus of the Ideas Immanent in Nervous Activity. Bullet. Mathemat. Biophysics, 5: 115–133.
12. Mohammadi, A. and Omid, M. 2010. Economical Analysis and Relation between Energy Inputs and Yield of Greenhouse Cucumber Production in Iran. Appl. Energy, 87:191–196.
13. Mohammadi, A., Rafiee, S., Mohtasebi, S. S. and Mousavi Avval S. H. 2010. Developing an Artificial Neural Network Model for Predicting Kiwifruit Production in Mazandaran Province of Iran. Agriculture Engineering Conference, 16-20 September 2010 Shanghai, China, PP. 389-395.
14. Omid, M., Baharlooei, A. and Ahmadi, H. 2009. Modeling Drying Kinetics of Pistachio Nuts with Multilayer Feed-forward Neural Network. Drying Technol., 27: 1069 -1077.
15. Ozkan, B., Fert, C. and Karadeniz F. 2007. Energy and Cost Analysis for Green House and Open-field Grape Production. Energy, 32: 1500- 1504.
16. Pahlavan, R., Omid, M. and Akram, A. 2012a. Energy Input-output Analysis and Application of Artificial Neural Networks for Predicting Greenhouse Basil Production. Energy, 37: 171-176.
17. Pahlavan, R., Omid, M. and Akram, A. 2012b. The Relationship between Energy Inputs and Crop Yield in Greenhouse Basil Production. J. Agr. S. Tech., 14: 1243-1253.
18. Pahlavan R., Omid M., and Akram A. 2012c. Application of Data Envelopment Analysis for Performance Assessment and Energy Efficiency Improvement Opportunities in Greenhouses Cucumber Production. J. Agr. Sci. Tech., 14: 1465-1475.
19. Rahman, M. M. and Bala, B. K.2010. Modeling of Jute Production Using Artificial Neural Networks. Bio Systems Engineering, 105: 350-356.
20. Thorburn, P. J., Jakku E., Webster A. J. and Everingham Y. 2011. Agricultural Decision Support Systems Facilitating Co-learning: A Case Study on Environmental Impacts of Sugarcane Production. Int. J. Agr. Sustain, 9: 322-333.
21. Yazdani, M. R., Saghafian B., Mahdian M. H. and Soltani S. 2009. Monthly Runoff Estimation Using Artificial Neural Networks. J. Agric. Sci. Tech., 11:355-362.
22. Zangeneh, M., Omid, M. and Akram, A. 2010. A Comparative Study on Energy Use and Cost Analysis of Potato Production under Different Farming Technologies in Hamadan Province of Iran. Energy, 35: 2927-2933.
23. Zangeneh, M., Omid, M. and Akram, A. 2011. A Comparative Study between Parametric and Artificial Neural Networks Approaches for Economical Assessment of Potato Production in Iran. Spanish J. Agr. Res., 9: 661-671.