Effect of Different Organic Substrates and Carbon and Nitrogen Sources on Growth and Shelf Life of Trichoderma harzianum

Authors
1 Department of Agriculture &agribusiness Manegment University of Karachi
2 Department of Plant Protection, Sidh Agriculture university Tandojam Pakistan
3 Department of Agriculture & Agri-business Manegment, University of Karachi
Abstract
Nine organic substrates viz., rice grains, sorghum grains, wheat grains, millet grains, wheat straw, rice husk, cow dung, sawdust, and poultry manure were used for mass multiplication of Trichoderma harzianum. Of these,sorghum grains followed by millet grains were the best substrates. The poultry manure appeared to be the most unsuitable substrate, whereas rice grains, wheat grains, wheat straw, and rice husk performed moderately well. Sucrose was the best carbon source and supported the highest colony growth of T. harzianum on Czapek’s Agar plates. Similarly, ammonium nitrate at 3,000 ppm appeared to be the most suitable nitrogen source and produced the highest colony growth as well as abundant conidia. A combined use of sucrose at 30,000 ppm as carbon source, and ammonium nitrate at 3,000 ppm as nitrogen source significantly enhanced the mycelial growth and conidial production by T. harzianum in wheat straw, rice husk, and millet grains, whereas, in sorghum grains and rice grains, the addition of carbon and nitrogen sources showed negative effect on sporulation of T. harzianum. Studies on shelf life of the inocula multiplied on various substrates showed that the populations of T. harzianum on all the substrates achieved the peak at 60-75 days incubation period and declined gradually thereafter. However, even after 330 days, the populations were greater than the population at 0-day. At 345-360 days interval, population was found to be less than the initial population at 0-day.

Keywords


1. Adekunle, A. T., Cardwell, K. F., Florini, D. A. and Ikotun, T. 2001. Seed Treatment with Trichoderma Species for Control of Damping Off of Cowpea Caused by Macrophomina phaseolina. Biocon. Sci. Technol., 11: 449-457.
2. Akhter, C. M. 1977. Biological Control of Some Plant Diseases Lacking Genetic Resistance of the Host Crops in Pakistan. Ann. N. Y. Acad. Sci., 287: 45-56.
3. Bailey, B. A., Hebbar, K. P., Lumsden, R. D., Oneill, N. R. and Lewis, J. A. 2004. Production of Pleospora papaveracea Biomass in Liquid Culture and Its Infectivity on Opium Poppy (Papaver somniferum). Weed Sci., 52: 91–7.
4. Benitez, T., Rincon, A. M., Limon, M. C. and Codon, A. C. 2004. Biocontrol Mechanisms of Trichoderma Strain. Int. J. Microbiol., 7(4): 249-260.
5. Cook, R. J. and Baker, K. F. 1983. The Nature and Practice of Biological Control of Plant Pathogens. American Phytopathological Society of Minnesota, 539 PP.
6. Dawar, S. and Ghaffar, A. 2003. Screening of Substrates for Mass Production of Biocontrol Agents. Pak. J. Bot., 35: 409-414.
7. Dolatabadi1, H. K., Goltapeh1, E. M., Mohammadi, N. and Rabiey, M. 2012. Biocontrol Potential of Root Endophytic Fungi and Trichoderma Species against Fusarium Wilt of Lentil under In vitro and Greenhouse Conditions. J. Agric. Sci. Technol., 14: 407-420.
8. Dubey, S. C., Suresh, M. and Singh, B. 2007. Evaluation of Trichoderma Species against Fusarium oxysporum f. sp. ciceris for Integrated Management of Chick Pea Wilt. Biological Control, 40(1): 118-127.
9. El-Katatny, M. K., Somitsch, W., Robra, K. H., El-Katany, M. S. and Gubitz, G. M. 2000. Production of Chitinase and 1,3-glucanase by Trichoderma harzianum for Control of the Phytopathogenic Fungus Sclerotium rolfsii. Food Technol. Biotechnol., 38(3): 173-180.
10. Etebarian, H. R. 2006. Evaluation of Trichoderma Isolates for Biological Control of Charcoal Stem Rot in Melon Caused by Macrophomina phaseolina. J. Agric. Sci. Technol., 8: 243-250.
11. Gashe, B. A. 1992. Cellulase Production and Activity by Trichoderma sp. A-001. J. Appl. Microbiol., 73(1): 79-82.
12. Ghaffar, A. 1978. Biological Control of Sclerotial Fungi: Final Research Report. Department of Botany, University of Karachi, Karachi-75270, Pakistan, 140 PP.
13. Ghaffar, A. 1988. Soilborne Diseases Research Center: Final Research Report. Department of Botany, University of Karachi, Karachi-75270, Pakistan.
14. Ghaffar, A. 1992. Use of Microorganisms in the Biological Control Soil Born Root Rot Diseases of Crop Plants: Final Research Report. Department of Botany. University of Karachi, Karachi-75270, Pakistan.
15. Harman, G. E., Howell, C. R., Viterbo, A., Chet, I. and Loreto, M. 2004. Trichoderma Species Opportunistic, Avirulent Plant Symbionts. Nature Rev. Microbiol., 2(1): 43-56.
16. Hashem, M. 2004. Biological Control of Two Phytopathogenic Fungal Species Isolated from the Rhizoplane of Soybean (Glycine max). Czech Mycology, 56: 223-238.
17. Jackson R. B. and Caldwell, M. M. 1991. Kinetic Responses of Pseudoroegneria Roots to Localized Soil Enrichment. Plant Soil, 138(2): 231-238.
18. Jayaswal R. K., Singh, R. and Lee, Y. S. 2003. Influence of Physiological and Environmental Factors on Growth and Sporulation of an Antagonistic Strain of Trichoderma viride RSR 7. Mycobiol., 31(1): 36-41.
19. Khan, M. O. and Shahzad, S. 2007. Screening of Trichoderma Species for Tolerance to Fungicides. Pak. J. Bot., 39(3): 945-951.
20. Kucuk, C. and Kivanc, M. 2003. Isolation of Trichoderma spp. and Determination of Their Antifungal, Biochemical and Physiological Features. Turk J. Biol., 27: 247-253.
21. Kucuk, C. and Kivanc, M. 2004. In vitro Antifungal Activity of Strains of Trichoderma harzianum. Turk J. Biol., 28: 111-115.
22. Larena, I., Melgarejo, P. and De Cal, A. 2002. Production, Survival, and Evaluation of Solid-substrate Inocula of Penicillium oxalicum, a Biocontrol Agent against Fusarium Wilt of Tomato. Phytopathol., 92: 863-869.
23. Li, F., Kang, S. and Zhang, J. 2004. Interactive Effects of Elevated CO2, Nitrogen and Drought on Leaf Area, Stomatal Conductance, and Evapotranspiration of Wheat. Agricult. Water Management, 67: 221–233.
24. Lumsden, R. D. and Locke, J. C. 1989. Biological Control of Pythium ultimum and Rhizoctonia solani Damping-off with Gliocladium virens in Soil Less Mix. Phytopathol., 79: 361-366.
25. Malik, G. and Dawar, S. 2003. Biological Control of Root Infecting Fungi with Trichoderma harzianum. Pak. J. Bot., 35; 971-975.
26. Masangkay, R. F., Paulitz, T. C., Hallett, S. G. and Watson, A. K. 2000. Solid Substrate Production of Alternaria alternata f. sp. sphenocleae Conidia. Bio-Con. Sci. Technol., 10: 399-409.
27. Melo, I. S. and Faull, J. I. 2000. Parasitism of Rhizoctonia solani by Strains of Trichoderma spp. Scientia Agricola., 57: 55-59.
28. Mev, A. K. and Meena, R. L. 2003. Mass Multiplication of Trichoderma harzianum for Biocontrol of Rhizome Rot of Ginger. J. Phytopathol. Res., 16(1): 89-92.
29. Naima, K., Brahim, E., Latifa, L. and Abdallah, O. 2004. Effect of Nitrogen Fertilizers and Trichoderma harzianum on Sclerotium rolfsii. Agronomie, 24: 281-288.
30. Pandey, K. K. 2009. Evaluation of Different Agricultural Based Substrate for Mass Multiplication of Trichoderma viride. Indian Phytopathol., 62(4): 530-532.
31. Pfirter, H.A., Guntli, D., Ruess, M. and Defago, G. 1999. Preservation, Mass Production and Storage of Stagonospora convolvuli, a Bioherbicide Candidate for Field Bindweed (Convolvulus arvensis). Biol. Control, 44: 437-47.
32. Prasad, R. D. and Rangeshwaran, R. 2000a. Shelf Life and Bioefficacy of Trichoderma harzianum Formulated in Various Carrier Materials. Plant Dis. Res., 15(1): 38-42.
33. Prasad, R. D. and Rangeshwaran, R. 2000b. Effect of Soil Application of a Granular Formulation of Trichoderma harzianum on Rhizoctonia solani Incited Seed Rot and Damping-off of Chickpea. J. Mycol. Plant Pathol., 30(2): 216-220.
34. Prasad, R. D. and Rangeshwaran, R. 2000c. An Improved Medium for Mass Production of the Biocontrol fungus Trichoderma harzianum. J. Mycol. Plant Pathol., 30(2): 233-235.
35. Prasad, R. D., Rangeshwaran, R., Anuroop, C. P. and Phanikumar, P. R. 2002a. Bioefficacy and Shelf Life of Conidial and chlamydospore Formulations of Trichoderma harzianum Rifai. J. Biol. Control., 16(2): 145-148.
36. Prasad, R. D., Rangeshwaran, R. and Sunanda, C. R. 2002b. Jaggery: An Easily Available Alternative to Molasses for Mass Production of Trichoderma harzianum. Plant Dis. Res., 17: 363–365.
37. Rettinassababady, C. and Ramadoss, N. 2000. Effect of Different Substrates on the Growth and Sporulation of Trichderma viride Native Isolates. Agricult. Sci. Digestion, 20(3): 150-152.
38. Rini, C. R. and Sulochana, K. K. 2007. Substrate Evaluation for Multiplication of Trichoderma spp. J. Tropical Agricult., 45(1-2): 58–60.
39. Saju, K. A., Anandaraj, M. and Sharma, Y. R. 2002. On Farm Production of Trichoderma harzianum Using Organic Matter. Indian Phytopathol., 55: 277–281.
40. Saleem, A., Hamid, K., Tariq, A. H. and Jamil, F. F. 2000. Chemical Control of Root and Collar Rot of Chilies. Pak. J. Phytopathol., 12(1): 1-5.
41. Sangle, U. R., Bambawale, O. M., Nasim, A. and Singh, S. K. 2003. Substrate and Temperature Requirements for Sporulation of Sub-tropical isolates of Trichoderma spp. Annals Plant Protect. Sci., 11(2): 192-195.
42. Seyis, I. and Aksoz, N. 2005. Effect of Carbon and Nitrogen Sources on Xylanase Production by Trichoderma harzianum 1073 D3. Int. Biodeter. Biodegr., 55: 115-119.
43. Sharma, S., Aggarwal, A., Parkash, V. and Sharma, D. 2005. Mass Production of VAM Fungi Using Different Substrates and Hosts. J. Mycopathol. Res., 43(1): 51-56.
44. Sharma, S. K., Kalra, K. L. and Kocher, G. S. 2004. Fermentation of Enzymatic Hydrolysate of Sunflower Hulls for Ethanol Production and Its Scale up. Biomass Bioenergy, 27: 399-402.
45. Somasegaran, P. and Hoben, H. J. 1985. Methods in Legume-rhizobium Technology. University of Hawaii, NiFTAL Project, Paia.
46. Syahiddin, D. S. 2007. Spore Production of Biocontrol Agent Trichoderma harzianum: Effect of C/N Ratio and Glucose Concentration. J. Rekayasa Kimia dan Lingkungan, 6(1): 35-40.
47. Tarek, A. and Moussa, A. 2002. Studies on Biological Control of Sugar Beet Pathogen Rhizoctonia solani Kühn. J. Biol. Sci., 2(12): 800-804.
48. Waksman, S. A. and Fred, E. B. 1922. A Tentative Outline of the Plate Method for Determining the Number of Micro-organisms in the Soil. Soil Sci., 14(1): 27-28.
49. Younis M., Khalid, M., Rashid, A. and Ashiq, A. 2004. Effect of Carbon, Nitrogen Sources and Ascorbic Acid on the Colony Growth and Acervulus Production of Pestalotia psydii. Int. J. Agricult. Biol., 6: 1110–1112.