Genetic Diversity of Iranian Isolates of Barley Scald Pathogen (Rhynchosporium secalis) Making Use of Molecular Markers

Authors
1 Department of Plant Pathology, College of Agriculture and Natural Resource, Islamic Azad University, Branch of Science and Research, Tehran, Islamic Republic of Iran.
2 Iranian Research Institute of Plant Protection, Evin, Tehran, Islamic Republic of Iran.
Abstract
Leaf blotch disease of barley, caused by Rhynchosporium secalis is a major disease of barley in Iran. Its worldwide occurrence and economic importance in barley production has motivated studies on the population genetic structure of this pathogen. Random Amplified Polymorphic DNA (RAPD) method was utilized to investigate the genetic diversity of populations of R. secalis isolated from barley leaves. A total of 94 isolates, representing five geographically distinct populations, were collected from diverse climatic regions in Iran. Genetic diversity was studied using eleven RAPD primers. Out of a total of 119 fragments generated by random decamer primers, 89 (75.1%) were polymorphic with an average of 8.1 polymorphic fragments per primer. Cluster analysis of RAPD data using UPGMA and simple matching coefficient method distinguished 33 main groups at 75% similarity level. The similarity between isolates ranged from 0.62 to 0.89. In total, 42 molecular phenotypes (haplotype) were distinguished among the 94 isolates by 11 RAPD primers. Haplotype one was found in all the five regions of Iran surveyed. Some haplotypes were specific to a single region while others found in several regions. There was little correlation observed between genetic vs. geographical distance suggesting that they were independent of each other.

Keywords


1. Arabi, M. L. E., Jawhar, M. and Al-Shehadeh, E. 2008. Molecular and Pathogenic Variation identified among isolates of Rhynchosporium secalis. J. Plant Path., 90: 179-184.
2. Boeger, J. M., Chen, R. S. and McDonald, B. A. 1993. Gene Flow between Geographic Populations of Mycoshaerella graminicola (Anamorph Septoria tritici) Detected with Restriction Fragment Length Polymorphism Markers. Phytopathol., 83: 1148-1154.
3. Bouajila, A., Abang, M. A. Haouas, S. Udupa, S. Rezgui, S. Baum, M. and Yahyaoui, A. 2007. Genetic Diversity of Rhynchosporium secalis in Tunisia as Revealed by Pathotype, AFLP, and Microsatellite Analyses. Mycopath., 163: 281-294.
4. Burdon, J. J., Abbott, D. C. Brown, A. H. D. and Brown, J. S. 1994. Genetic Structure of the Scald Pathogen (Rhynchosporium secalis) in South East Australia: Implications for Control Strategies. Austr. J. Agri Res., 45: 1445-1454.
5. Chen, R. S. and McDonald, B. A. 1996. Sexual Reproduction Plays a Major Role in the Genetic Structure of Population of the Fungus Mycosphaerella graminicola. Genetics, 142: 1119-1127.
6. Cromey, M. G. and Mulholland, R. W. 1987. Host Specialization of Rhynchosporium secalis in New Zealand. J. Agri. Res., 30: 345-348.
7. Fitt, B. D. L., McCartney, H. A. and Walklate, P. J. 1989. The Role of Rain in Dispersal of Pathogen Inoculum. Annu. Rev. Phytopathol., 27: 241-270.
8. Gargouri, S., Bermier, L. Hajlaoui, R. and Marrakchi, M. 2003. Genetic Variability and Population Structure of the Wheat Foot Rot Fungus, Fusarium culmorum, in Tunisia. Euro. J. Plant Pathol., 109: 807-815.
9. Goodwin, S. B. 2002. The Barley Scald Pathogen Rhynchosporium secalis Is Closely Related to the Discomycetes Tapesia and Pyrenopeziza. Myco. Res., 106: 645-654.
10. Goodwin, S. B., Saghai Maroof, M. A., Alard, R. W. and Webster, R. K. 1993. Isozyme Variation within and among Populations of Rhynchosporium secalis in Europe, Australia and the United States. Myco. Res., 97: 49-58.
11. Goodwin, S. B., Webster, R. K. and Alard, R. W. 1994. Evidence for Mutation and Migration as Sources of Genetic Variation in Population of Rhynchosporium secalis. Phytopathol., 94: 1047-1053.
12. Keller, S. M., McDonald, J. M. Pettway, R. E. Wolfe, M. S. and McDonald, B. A. 1997. Gene Flow and Sexual Reproduction in the Wheat Glume Blotch Pathogen Phaeosphaeria nodorum (anamorph: Stagonospora nodorum). Phytopathol., 87: 353-358.
13. Keller, S. M., Wolfe, M. S. McDonald, J. M. and McDonald, B. A. 1997. High Genetic Similarity among Populations of Phaeosphaeria nodorum across Cultivars and Regions in Switzerland. Phytopathol., 87: 1134-1129.
14. Khan, T. N. 1986. Effect of Fungicide Treatment on Scald (Rhynchosporium secalis (ODU, J. Davis) Iinfection on Some Quality Characteristics of Barley. Austra. J. Agri., 28: 783-785.
15. Kolmer, J. A., Liu, J. Q. and Sies, M. 1995. Virulence and Molecular Polymorphism in Puccinia recondita f. sp. tritici in Canada. Phytopathol., 81: 276-285.
16. Linde, C. C., Zala, M. and McDonald, B. A. 2009. Molecular Evidence Recent Founder Populations and Human-mediated Migration in the Barley Scald Pathogen Rhynchosporium secalis. Mol. Phylo. Evolu., 51: 454-464.
17. McDermott, J. M., McDonald, B. A. Allard, R. W. and Webster, R. K. 1989. Genetic Variability for Pathogenicity, Isozyme, Ribosomal DNA and Colony Color Variants in Populations of Ryhnchosporium secalis. Genetic, 122: 551-565.
18. McDonald, B. A., Zhan, J. and Burdon, J. J. 1999. Genetic Structure of Rhynchosporium secalis in Australia. Phytopathol., 89: 639-645.
19. Newma, P. L. and Owen, H. 1985. Evidence of Asexual Recombination in Rhynchosporium secalis. Plant Patho., 34: 338-340.
20. Newton, A. C., Searle, J. Guy, D. C. Hackett, C. A. and Cooke, D. E. L. 2001. Variability in Pathotype, Aggressiveness, RAPD Profile, and rDNA ITS1 Sequences of UK Isolates of Rhynchosporium secalis. J. Plant Dis., 108: 446-458.
21. Newton, A. C. 1989. Somatic Recombination in Rhynchosporium secalis. Plant Path., 34: 338-343.
22. Nei, M. 1972. Genetic Distance between Populations. The Amer. Natural., 106: 282-292.
23. Nei, M. 1978. Estimation of Average Heterozygosity and Genetic Distance from a Small Number of Samples. Genetics, 89: 583-590.
24. Rohlf, . J. 1990. NTSYSpc, Numerical Taxonomy and Multivariate Analysis System. Version 2.02. Appl. Biost., New York, 34pp.
25. Salamati, S., Zhan, J. Burdon, J. J. and McDonald, B. A. 2000. The Genetic Structure of Field Populations of Rhynchosporium secalis from Three Continents Suggests Moderate Gene Flow and Regular Recombination. Phytopathol., 90: 901-908.
26. Shannon, C. E. and Weaver, W. 1949. The Mathematical Theory of Communication. University of Illinois Press Urbana IL, 117pp.
27. Stedman, O. J. 1980. Observation on the Production and Dispersal of Spores, and Infection by Rhynchosporium secalis. Annu. Appl. Bio., 95: 163-175.
28. Tekauz, A. 1991. Pathogenic Variation in Rhynchosporium secalis on Barley in Canada. J. Plant Path., 13: 298-304.
29. von Korff, M., Udupa, S. M., Yahyoui, A. and Baum, M. 2004. Genetic Variation among Rhynchosporium secalis Populations of West Asia and North Africa as Revealed by RAPD and AFLP Analysis. J. Phytopathol., 152: 106-113.
30. Welty, R. E. and Metzger, R. J. 1996. First Report of Scald of Triticale Caused by Rhynchosporium secalis in North America. Plant Dis., 80: 1220-1225.
31. William, J. G. K., Kubelik, A. R., Livak, K. J., Rafalski, J. A. and Tingey, S. V. 1990. DNA Polymorphisms Amplified by Arbitrary Primers Are Useful as Genetic Markers. Nuc. Acid Res., 18: 6351-6535.
32. Wright, S. 1951. The Genetical Structure of Populations. Annu. Eugen., 15: 323-354.
33. Zaffarano, P. L., McDonald, B. A., Zala, M. and Linde, C. C. 2006. Global Hierarchical Gene Diversity Analysis Suggests the Fertile Crescent Is Not the Center of Origin of the Barley Scald Pathogen Rhynchosporium secalis. Phytopathol., 96: 941-950.
34. Zhan, J., Fitt, B. D. L., Pinnschmidt, H. O., Oxley, S. J. P. and Newton, A. C. 2008. Resistance, Epidemiology and Sustainable Management of Rhynchosporium secalis Population on Barley. Plant Pathol., 57: 1-14.
35. Zhan, J., Mundi, C. C. and McDonald, B. A. 1998. Measuring Immigration and Sexual Reproduction in Field Population of Mycoshaerella graminicola. Phytopathol., 88: 1330-1337.