Recycling Rice Straw into Biofuel "Ethanol" by Saccharomyces cerevisiae and Pichia guilliermondii

Authors
1 Department of Botany, Faculty of Science, Assiut University, 71516, Egypt.
2 King Khalid University, Faculty of Science, Biological Science Department, P.O. Box 10255, Abha 61321, Saudi Arabia.
Abstract
This study suggests a new effective chemical pretreatment to hydrolyze rice straw for efficient ethanol production. It introduces a new yeast strain that ferments rice straw hydrolyzate more efficiently than Saccharomyces cerevisiae. The results proved the effectiveness of alkali application before HCl to delignify rice straw and to make it more appropriate for hydrolysis. The application of the hydrolyzing enzymes (cellulase and pectinase) resulted in hydrolysis of pretreated rice straw up to 94.3%. The total sugars released due to pretreatment-enzyme system was about 624 mg g–1 dry mass and the glucose fraction was 198 mg g–1. The results indicated that Pichia guilliermondii is more effective to ferment rice straw hydrolyzate than S. cerevisiae. P. guilliermondii produced larger amounts of bioethanol (7.72 g L–1) than S. cerevisiae (6.13 g L–1)under the same conditions. Our results suggest an appropriate pretreatment system (the cold dilute alkali-acid) and a new effective yeast strain to ferment the rice straw hydrolyzate to produce large amounts of bioethanol.

Keywords


1. Anwar, Z., Gulfraz, M., Imran, M., Asad, M. J., Shafi A. I., Anwar P. and Qureshi R. 2012. Optimization of Dilute Acid Pretreatment Using Response Surface Methodology for Bioethanol Production from Cellulosic Biomass of Rice Polish. Pak. J. Bot., 44(1): 169-176.
2. Baour-Hoch, B., Machler, F. and Nosberger, J. 1990. Effect of Carbohydrate Demand on the Metabolization of Starch in Stolons and Roots of White Clover (Trifolium repens L.) after Defoliation. J. Exp. Bot., 41: 573-578.
3. Cazetta, M. L., Celligoi, M. A., Buzato, J. B and Scarmino, I. S. 2007. Fermentation of Molasses by Zymomonas mobilis: Effects of Temperature and Sugar Concentration on Ethanol Production. Biores. Technol., 98: 2824–2828.
4. Dawson, L. and Boopathy, R. 2007. Use of Post-harvest Sugarcane for Ethanol Production. Biores. Technol., 98: 1695-1699.
5. Dever, J. E., Bandurski, R. S. and Kivilaan, A. 1968. Partial Chemical Characterization of Corn Root Cell Walls. Plant Physiol., 43: 50–56.
6. Dipardo, J. 2002. Outlook for Biomass Ethanol Production and Demand. Energy Information Administration, Washington DC, USA, P.10.
7. Fales, F. W. 1951. The Assimilation and Degradation of Carbohydrates by Yeast Cells. J. Biol. Chem., 193: 113–118.
8. Galbriath, D. W. and Shields, B. A. 1981. Analysis of the Initial Stages of Plant Protoplast Development Using 33258 Hoechst: Reactivation of the Cell Cycle. Physiol. Plant., 51: 380–386.
9. Garrote, G., Dominguez, H. and Parajo, J. C. 2002. Autohydrolysis of Corncob: Study of Non-isothermal Operation for Xylooligosaccharide Production. J. Food Engin., 52: 211–218.
10. Ghose, T. K. 1987. Measurement of Cellulase Activities. Pure Appl. Chem., 59: 257–268.
11. Hashem, M. 2005. Isolation and Characterization of Some Yeast Strains from Natural Habitats and Study Their Efficacy in Biological Control of Postharvest Rot of Strawberry Caused by Botrytis cinerea. Assuit Univ. J. Bot., 34(1): 39-57.
12. He, Y., Pang, Y., Liu, Y., Li, X. and Wang, K. 2008. Physicochemical Characterization of Rice Straw Pretreated with Sodium Hydroxide in the Solid State for Enhancing Biogas Production. Energy Fuels, 22: 2775-2781.
13. Horitsu, H., Yahahsi, Y., Takamizawa, K., Kawai, K., Suzuki, T. and Watanabe, N. 1992. Production of Xylitol from D-xylose by Candida tropicalis: Optimization of Production Rate. Biotechnol. Bioeng., 40: 1085-1091.
14. Jackson, M. G. 1977 The Alkali Treatment of Straws. Anim. Feed Sci. Technol., 2: 105.
15. Jeya, M., Zhang, Y. -W., Kim, I. -W. and Lee, J. -K. 2009. Enhanced Saccharification of Alkali-treated rice Straw by Cellulase from Trametes hirsuta and Statistical Optimization of Hydrolysis Conditions by RSM. Biores. Technol., 100: 5155–5161.
16. Karimi, K., Kheradmandinia, S. and Taherzadeh, M. J. 2006. Conversion of Rice Straw to Sugars by Dilute-acid Hydrolysis. Biom. Bioen., 30: 247–253.
17. Krishna, S. H. and Chowdary, G. V. 2000. Optimization of Simultaneous Saccharification and Fermentation for the Production of Ethanol from Lignocellulosic Biomass. J. Agri. Food Chem., 48: 1971–1976.
18. Kucuk, M. M. and Demirbas, A. 1997. Biomass Conversion Processes. Energy Convers. Mgmt., 38: 151-165.
19. Ma, H., Liu, W. W., Chen, X., Wua, Y. J. and Yu, Z. L. 2009. Enhanced Enzymatic Saccharification of Rice Straw by Microwave Pretreatment. Biores. Technol., 100: 1279-1284.
20. Mandels, M. and Weber, J. 1969. Production of Cellulases. Adv. Chem. Ser., 95: 391–414.
21. Prasad, S., Singh, A. and Joshi, H.CC. 2007. Ethanol as an Alternative Fuel from Agricultural, Industrial and Urban Residues. Res. Conserv. Recycl., 50: 1–39.
22. Qiu, H., Huang, J., Yang, J., Rozelle, S., Zhang, Y. and Zhang, Y. 2010. Bioethanol Development in China and the Ootential Impacts on Its Agricultural Economy. Appl. Energy, 87: 76–83.
23. Saha, B. C. 2003. Hemicellulose Bioconversion. J. Indust. Microbiol. Biotech., 30: 279–291.
24. Sanchez, G., Pilcher, L., Roslander, C., Modig, T., Galbe, M. and Liden, G. 2004. Dilute-acid Hydrolysis for Fermentation of the Bolivian Straw Material Paja Brava. Biores. Technol., 93(3): 249–256.
25. Selvendran, R. R. and O’Neill, M. A. 1987. Isolation and Analysis of Cell Wall from Plant Material. Methods Biochem. Anal., 32: 125–153.
26. Sewalt, V. J. H., Glasser, W. G. and Beauchemin, K. A. 1997. Lignin Impact on Fiber Degradation: Reversal of Inhibition on Enzymatic Hydrolysis by Chemical Modification of Lignin and by Additives. J. Agri. Food Chem., 45: 1823–1828.
27. Singh, A. and Bishnoi, N. R. 2012. Optimization of Enzymatic Hydrolysis of Pretreated Rice Straw and Ethanol Production. Appl. Microbiol. Biotechnol., 93(4):1785-9
28. Singh, A., Tuteja, S., Singh, N. and Bishnoi, N. R. 2011. Enhanced Saccharification of Rice Straw and Hull by Microwave-alkali Pretreatment and Lignocellulytic Enzyme Production. Biores. Technol., 102: 1773-1782.
29. Slininger, P. J., Bothast, R. J., Okos, M. R. and Ladisch, M. R. 1985. Comparative Evaluation of Ethanol Production by Xylose-fermenting Yeasts Presented High Xylose Concentrations. Biotechnol. Lett., 7: 431–436.
30. Somogyi, M. 1952. Notes on Sugar Determination. J. Biologic. Chem., 195: 19–23.
31. Southgate, D. A. T. 1976. Determination of Food Carbohydrates. Applied Science Publishers Ltd., Essex, England, PP 75–84.
32. Sun, Y. and Cheng, J. 2002. Hydrolysis of lignocellulosic materials for ethanol production: a review. Biores. Technol., 83:1–11
33. Taherzadeh, M. J., Niklasson, C. and Lidén, G. 1997. Acetic Acid-friend or Foe in Anaerobic Batch Conversion of Glucose to Ethanol by Saccharomyces cerevisiae. Chem. Engin. Sci., 52(15): 2653–2659.
34. Taleghani, M., Ansari, H. R., Jennings, P. 2010. Renewable Energy Education in Sustainable Architecture: Lessons from Developed and Developing Countries. Energy Educ. Sci. Technol. 2(B):111–131.
35. Vlasenko, E. Y., Ding, H., Labavitch, J. M. and Shoemaker, S. P. 1997. Enzymatic Hydrolysis of Pretreated Rice Straw. Biores. Technol., 59(2-3): 109-119.
36. Wagner, W., Keller, F. and Wiemken, A .1983. Fructan Metabolism in Cereals: Induction in Leaves and Compartmentation in Protoplasts and Vacuoles. Zeitschriftfuer Pflanzenphysiologie, 112: 359-372.
37. Wyman, C. E. 1996. Ethanol Production from Lignocellulosic Biomass: Overview. 1. In: "Handbook on Bioethanol: Production and Utilization", (Ed.): Wyman, C. E.. Taylor and Francis, Washington, DC, PP. 11–12.
38. Wayman, M., Chen, S. and Doan, K. 1992. Bioconversion of Waste Paper to Ethanol. Process Biochem., 27: 239-245.
39. Xiao, B., Sun, X. F. and Sun, R. C. 2001. Chemical, Structural, and Thermal Characterizations of Slkali-soluble Llignins and Hemicelluloses, and Cellulose from Maize Stems, Rye Straw, and Rice Straw. Polym. Degrad. Stabil., 74: 307–319.
40. Yu, J. Z., Tan, X. and Tianweiet, A. 2007. A Novel Immobilization Method of Saccharomyces cerevisiae to Sorghum Bagass for Ethanol Production. J. Biotechnol., 129: 415-420.
41. Zhang, Q., He, G., Wang, J., Cai, W. and Xu, Y. 2009. Mechanisms of the Stimulatory Effects of Rhamnolipid Biosurfactant on Rice Straw Hydrolysis. Biores. Technol., 86: 233–237.
42. Zayed, G. and Abdel-Motaal, H. 2005. Bio-active Composts from Rice Straw Enriched with Rock Phosphate and Their Effect on the Phosphorous Nutrition and Microbial Community in Rhizosphere of Cowpea. Biores. Technol., 96: 929–935.
43. Zohri, A. A. and Moustafa, E. M. 2000. Ethanol Production from Dates in Saudi Arabia on Industrial Scale. Mycobiol., 28(2): 76-81.