Resistance to QoI Fungicide and Cytochrome b Diversity in the ‎Hungarian Botrytis cinerea Population

Authors
1 Department of Biochemical Engineering, Faculty of Science and Technology, University of Debrecen, ‎Egyetem tér 1., 4032 Debrecen, Hungary.‎
2 Research and Extension Centre for Fruit Growing, Vadastag 2, H-4244 Újfehértó, Hungary.‎
3 Institute of Food Processing, Quality Assurance and Microbiology, Faculty of Agricultural and Food ‎Sciences and Environmental Management, University of Debrecen, Böszörményi út 138., 4032 Debrecen, ‎Hungary.‎
Abstract
Quinol oxidation inhibitors (QoIs) are one of the most important classes of fungicides used in agriculture. They block electron transfer between cytochrome b and cytochrome c1, thereby impeding the production of ATP via oxidative phosphorylation. QoI fungicides are generally at high risk of provoking resistance in fungal phytopathogens. Resistance has been reported in more than thirty species, amongst others, in Botrytis cinerea. In various QoI-resistant monosporic B. cinerea isolates from Hungary, a G-to-C point mutation was identified in the mitochondrial gene that encodes the QoI target, cytochrome b, resulting in a glycine to alanine substitution at position 143 (G143A). Analysis of Hungarian group I and group II strains further indicated the frequent occurrence of an additional group I-type intron in the cytb gene directly downstream of the glycine-143 codon. Mutual presence of distinct mitochondrial DNAs specifying different cytb alleles (heteroplasmy) has also been detected in monosporic strains. Remarkably, a number of group II field isolates were found to be highly resistant to azoxystrobin although they did not appear to carry the G-to-C mutation (G143A) generally associated with fungal QoI-resistance.

Keywords


1. Avila-Adame, C., Olaya, G. and Koller, W. 2003. Characterization of Colletotrichum graminicola Isolates Resistant to Strobilurin-related QoI Fungicides. Plant Dis., 87: 1426–32.
2. Banno, S., Fukumori, F., Ichiishi, A. Okada, K., Uekusa, H., Kimura, M. and Fujimura, M. 2008. Genotyping of Benzimidazole-Resistant and Dicarboximide-resistant Mutations in Botrytis cinerea Using Real-time Polymerase Chain Reaction Assays. Phytopathol., 98: 397–404.
3. Baroffio, C. A., Siegfried, W. and Hilber, U. W. 2003. Long-term Monitoring for Resistance of Botryotinia fuckeliana to Anilinopyrimidine, Phenylpyrrole, and Hydroxyanilide Fungicides in Switzerland. Plant Dis., 87:662–666.
4. Esser, L., Quinn, B., Li, Y. F., Zhang, M., Elberry, M., Yu, L., Yu, C. A. and Xia, D. 2004. Crystallographic Studies of Quinol Oxidation Site Inhibitors: A Modified Classification of Inhibitors for the Cytochrome bc1 complex. J. Mol. Biol., 341: 281–302.
5. Esterio, M., Auger, J. and Garcia, H. 2007. First Report of Fenhexamid Resistant Isolates of Botrytis cinerea on Grapevine in Chile. Plant Dis., 91: 768. (Abstract)
6. Fekete, É., Fekete, E., Irinyi, L., Karaffa, L., Árnyasi, M., Asadollahi, M., Kövics, G. J. and Sándor, E. 2012. Genetic Diversity within the Botrytis cinerea Group I Cryptic Species. Microbiol. Res., 167: 283-291.
7. Fernández-Ortuño, D., Torés, J. A., De Vicente, A. and Pérez-García, A. 2008. Mechanisms of Resistance to QoI Fungicides in Phytopathogenic Fungi. Int. Microbiol., 11: 1-9.
8. Fournier, E., Levis, C., Fortin, D., Leroux, P., Giraud, T. and Brygoo, Y. 2003. Characterization of Bc-hch, the Botrytis cinerea Homolog of the Neurospora crassa het-c Vegetative Incompatibility Locus, and its Use as a Population Marker. Mycologia, 95: 251-261.
9. Furuya, S., Suzuki, S., Kobayashi, H., Saito, S. and Takayanagi, T. 2009. Rapid Method for Detecting Resistance to a QoI Fungicide in Plasmopara viticola Populations. Pest Manag. Sci., 65: 840-843.
10. Gisi, U., Sierotzki, H., Cook, A. and McCaffery, A. 2002. Mechanisms Influencing the Evolution of Resistance to Qo Inhibitor Fungicides. Pest Manag. Sci., 58: 859–67.
11. Grasso, V., Palermo, S., Sierotzki, H., Garibaldi, A. and Gisi, U. 2006. Cytochrome b Gene Structure and Consequences for Resistance to Qo Inhibitor Fungicides in Plant Pathogens. Pest. Manag. Sci., 62: 465–72.
12. Gullino, M. L. and Kuijpers L. A. M. 1994. Social and Political Implications of Managing Plant Diseases with Restricted Fungicides in Europe. Annu. Rev. Phytopath., 32: 559-579.
13. Haugen, P., Simon D. M. and Bhattacharya D. 2005. The Natural History of Group I Introns. Trends Genet., 21: 111-119.
14. Ishii, H., Fountaine, J., Chung, W. H., Kansako, M., Nishimura, K., Takahashi, K. and Oshima, M. 2009. Characterisation of QoI-resistant Field Isolates of Botrytis cinerea from Citrus and Strawberry. Pest. Manag. Sci., 65: 916-922.
15. Ishii, H., Yano, K., Date, H., Furuta, A., Sagehashi, Y., Yamaguchi, T., Sugiyama, T. and Hasama, W. 2007. Molecular Characterization and Diagnosis of QoI Resistance in Cucumber and Egg Plant Fungal Pathogens. Phytopathol., 97: 1458–66.
16. Jiang, J., Ding, L., Michailides, T. J., Li, H. and Ma, Z. 2009. Molecular Characterization of Field Azoxystrobin-resistant Isolates of Botrytis cinerea. Pestic. Bioch. Phys., 93: 72–76.
17. Kim, Y. S., Dixon, E. W., Vincelli, P. and Farman, M. L. 2003. Field Resistance to Strobilurin (QoI) Fungicides in Pyricularia grisea Caused by Mutations in the Mitochondrial Cytochrome b Gene. Phytopathol., 93: 891–900.
18. Kuck, K. H. and Gisi, U. 2007. FRAC Mode of Action Classification and Resistance Risk of Fungicides. In: "Modern Crop Protection Compounds", (Eds.): W. Krämer and Schirmer, U.. Wiley-VCH., Weinheim, PP. 415–432.
19. Leroux, P., Gredt, M., Leroch, M. and Walker. A. S. 2010. Exploring Mechanisms of Resistance to Respiratory Inhibitors in Field Strains of Botrytis cinerea, the Causal Agent of Gray Mold. Appl. Environ. Microbiol., 76: 6615– 6630.
20. Leroux, P., Fritz, R., Debieu, D., Albertini, C., Lanen, C., Bach, J., Gredt, M. and Chapeland, F. 2002. Mechanisms of Resistance to Fungicides in Field Strains of Botrytis cinerea. Pest Manag. Sci., 58: 876–888.
21. Lesemann, S. S., Schimpke, S., Dunemann, F. and Deising, H. B. 2006. Mitochondrial Heteroplasmy for the Cytochrome b Gene Controls the Level of Strobilurin Resistance in the Apple Powdery Mildew Fungus Podosphaera leucotricha (Ell. and Ev.) E. S. Salmon. J. Plant Dis. Protect., 113: 259–266.
22. Lesniak, K. E., Proffer, T. J., Beckerman, J. L. and Sundin, G. W. 2011. Occurrence of QoI Resistance and Detection of the G143A Mutation in Michigan Populations of Venturia inaequalis. Plant Dis., 95: 927–934.
23. Ma, Z. and Michailides, T. J. 2005. Advances in Understanding Molecular Mechanisms of Fungicide Resistance and Molecular Detection of Resistant Genotypes in Phytopathogenic Fungi. Crop Prot., 24: 853–863.
24. Ma, Z., Felts, D. and Michailides T. J. 2003. Resistance to Azoxystrobin in Alternaria Isolates from Pistachio in California. Pestic. Biochem. Phys., 77: 66–74.
25. McDermott, J. M. and McDonald, B. A. 1993. Gene Flow in Plant Pathosystems. Annu. Rev. Phytopathol., 31: 353-373.
26. Saito, S., Suzuki, S. and Takayanagi, T. 2009. Nested PCR-RFLP Is a High-speed Method to Detect Fungicide-resistant Botrytis cinerea at an Early Growth Stage of Grapes. Pest. Manag. Sci., 65: 197-204.
27. Samuel, S., Papayiannis, L. C., Leroch, M., Veloukas, T., Hahn, M. and Karaoglanidis, G. S. 2011. Evaluation of the Incidence of the G143A Mutation and cyt b Intron Presence in the Cytochrome bc-1 Gene Conferring QoI Resistance in Botrytis cinerea Populations from Several Hosts. Pest Manag. Sci., 67: 1029-1036.
28. Sierotzki, H., Frey, R., Wullschleger, J., Palermo, S., Karlin, S., Godwin, J. and Gisi, U. 2007. Cytochrome b Gene Sequence and Structure of Pyrenophora teres and P. tritici-repentis and Implications for QoI Resistance. Pest Manag. Sci., 63: 225–33.
29. Sierotzki, H., Wullschleger, J. and Gisi, U. 2000. Point Mutation in Cytochrome b Gene Conferring Resistance to Strobilurin Fungicides in Erysiphe graminis f. sp. tritici Field Isolates. Pest Biochem. Physiol., 68: 107–112.
30. Walker, A. S., Gautier, A., Confais, J., Martinho, D., Viaud, M., Le Pêcheur, P., Dupont, J. and Fournier, E. 2011. Botrytis pseudocinerea: A New Cryptic Species Causing Gray Mold in French Vineyards in Sympatry with Botrytis cinerea. Phytopathol., 12:1433-45.
31. Weber, R. W. S. and Hahn, M. 2011. A Rapid and Simple Method for Determining Fungicide Resistance in Botrytis. J. Plant Dis. Protect., 118: 17–25.
32. Wedge, D. E., Smith B. J., Quebedeaux J. P. and Constantin R. J. 2007. Fungicide Management Strategies for Control of Strawberry Fruit Rot Diseases in Louisiana and Mississippi. Crop Prot., 26: 1449-1458.
33. Wood, P. M. and Hollomon, D. W. 2003. A Critical Evaluation of the Role of Alternative Oxidase in the Performance of Strobilurin and Related Fungicides Acting at the Qo Site of Complex III. Pest Manag. Sci., 59: 499-511.
34. Yin, Y. N., Kim, Y. K. and Xiao, C. L. 2012. Molecular Characterization of Pyraclostrobin Resistance and Structural Diversity of the Cytochrome b Gene in Botrytis cinerea from Apple. Phytopathol.,102: 315-322.
35. Yoon, C. S., Ju, E. H., Yeoung, Y. R. and Kim, B. S. 2008. Survey of Fungicide Resistance for Chemical Control of Botrytis cinerea on Paprika. Plant Pathol. J., 24: 447-452.
36. Zhang, X., Chen, Y., Zhang, Y. J. and Zhou, M. G. 2008. Occurrence and Molecular Characterization1of1Azoxystrobin Resistance in Cucumber Downy Mildew in Shandong Province of China. Phytoparasitica, 36: 136-143.