Noninvasive Evaluation of Fructose, Glucose, and Sucrose ‎Contents in Fig Fruits during Development Using ‎ Chlorophyll Fluorescence and Chemometrics

Authors
1 College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China.‎
2 Department of Biological and Food Engineering, Changshu Institute of Technology, Changshu, Jiangsu ‎‎215500, China.‎
Abstract
The use of chlorophyll fluorescence (ChlF) technique was evaluated on nondestructive measurement of sugar content during fruit development. Multivariate models, principal component analysis (PCA), and partial least-squares regression (PLSR), were developed for the classification and prediction of fructose, glucose, and sucrose in fig fruits. The results of this study showed a significant correlation between fluorescence parameters and sugar content during fruit development. The PCA-ChlF can be used as a fast screening method for discriminating the degree of maturity based on sugar content. In addition, the root mean squared error (RMSE) and coefficient of determination (R2) of PLSR-ChlF for predicting sugar content were 2.01 g 100 g-1 DW and 0.96 for fructose, 1.03 g 100 g-1 DW and 0.99 for glucose, and 0.17 g 100 g-1 DW and 1.00 for sucrose, respectively. Therefore, ChlF combined with chemometrics may be a potential tool to nondestructively evaluate sugar accumulation in not only fig fruits, but also any other chlorophyll-containing fruit during development.

Keywords


1. Kislev, M. E., Hartmann, A. and Bar-Yosef, O. 2006. Early Domesticated Fig in the Jordan Valley. Sci., 312(5778): 1372-1374.
2. FAO. (2003). Statistical Database. Available from . IGEME, Statistical database. Available from .
3. Glew, R. H., Ayaz, F. A., Sanz, C., VanderJagt, D. J., Huang, H. S., Chuang, L. T. and Strnad, M. 2003. Changes in Sugars, Organic Acids and Amino Acids in Medlar (Mespilus germanica L.) during Fruit Development and Maturation. Food Chem., 83: 363-369.
4. Cho, S. I., Stroshine, R. L., Baianu, I. C. and Krutz, G. W. 1993. Nondestructive Sugar Content Measurements of Intact Fruit Using Spin-Spin Relaxation Time (T2) Measurements by Pulsed 1H magnetic resonance. Trans. Amer. Soc. Agr. Eng., 36(4): 1217–1221.
5. Steinmetz, V., Roger, J. M., Moltó, E. and Blasco, J. 1999. On-line Fusion of Colour Camera and Spectrophotometer for Sugar Content Prediction of Apples. J. Agric. Eng. Res., 73: 207-216.
6. Kondo, N., Ahmad, U., Monta, M., and Murase, H. 2000. Machine Vision Based Quality Evaluation of Iyokan Orange Fruit Using Neural Networks. Comput. Electron. Agr., 29: 135–147.
7. Bureau, S., Ruiz, D., Reich, M., Gouble, B., Bertrand, D., Audergon, J. M. and Renard, C. M. G. C. 2009. Application of ATR-FTIR for a Rapid and Simultaneous Determination of Sugars and Organic Acids in Apricot Fruit. Food Chem., 115: 1133-1140.
8. Liu, Y. D., Sun, X. D., Zhou, J. M., Zhang, H. L. and Yang, C. 2010. Linear and Nonlinear Multivariate Regressions for Determination Sugar Content of Intact Gannan Navel Orange by Vis-NIR Diffuse Reflectance Spectroscopy. Math. Comput. Modelling, 51(11-12): 1438-1443.
9. Song, F., Deng, W. M., Beaudry, R. M. and Armstrong, P. R. 1997. Changes in Chlorophyll Fluorescence of Apple Fruit During Maturation, Ripening, and Senescence. J. Agric. Food Chem., 45: 891-896.
10. Agati, G., Pinelli, P., Ebner, S. C., Romani, A., Cartelat, A. and Cerovic, Z. G. 2005. Nondestructive Evaluation of Anthocyanins in Olive (Olea europaea) Fruits by in situ Chlorophyll Fluorescence Spectroscopy. J. Agric. Food Chem., 53: 1354-1363.
11. Noh, H. K. and Lu, R. 2007. Hyperspectral Laser-Induced Fluorescence Imaging for Assessing Apple Fruit Quality. Posth. Bio. Tech., 43: 193-201.
12. Ramin, A. A., Prange, R. K., DeLong, J. M. and Harrison, P. A. 2008. Evaluation of Relationship between Moisture Loss in Grapes and Chlorophyll Fluorescence Measured as Fo (F-Α) Reading. J. Agric. Sci. Technol., 10: 471-479.
13. Zheng, H., Lu, H., Zheng, Y. P., Lou, H. and Chen, C. 2010. Automatic Sorting of Chinese Jujube (Zizyphus jujuba Mill. cv. ‘hongxing’) Using Chlorophyll Fluorescence and Support Vector Machine. J. Food Eng., 101: 402-408.
14. Smillie, R. M., Hetherington, S. E., Nott, R., Chaplin, G. R. and Wade, N. L. 1987. Application of Chlorophyll Fluorescence to the Postharvest Physiology and Storage of Mango and Banana Fruit and the Chilling Tolerance of Mango Cultivars. Asian Food J., 39: 55-59.
15. Sanxter, S. S., Yamamoto, H. Y., Fisher, D. G. and Chan, H. T. 1992. Development and Decline of Chloroplasts in Exocarp of Carica Papaya. Can. J. Bot., 70: 364-373.
16. Lechaudel, M., Urban, L. and Joas, J. 2010. Chlorophyll Fluorescence, A Nondestructive Method to Assess Maturity of Mango Fruits (cv. ‘Cogshall’) without Growth Conditions bias. J. Agric. Food Chem., 58: 7532-7538.
17. Kolb, C. A., Wirth, E., Kaiser, W. M., Meister, A., Riederer, M. and Pfündel, E. E. 2006. Noninvasive Evaluation of the Degree of Ripeness in Grape Berries (Vitis vinifera L. cv. Bacchus and Silvaner) by Chlorophyll Fluorescence. J. Agric. Food Chem., 54: 299-305.
18. Bron, I. U., Ribeiro, R. V., Azzolini, M., Jacomino, A. P. and Machado, E. C. 2004. Chlorophyll Fluorescence as a Tool to Evaluate the Ripening of ‘Golden’ Papaya Fruit. Posth. Bio. Tech., 33: 163-173.
19. Dai, Y. J., Shen, Z. G., Liu, Y., Wang, L. L., David, H. and Lu, H. F. 2009. Effects of Shade Treatments on the Photosynthetic Capacity, Chlorophyll Fluorescence, and Chlorophyll Content of Tetrastigma hemsleyanum Diels et Gilg. Environ. Exp. Bot., 65: 177-182.
20. Hammer, Ø., Harper, D. A. T. and Ryan, P. D. 2001. Past: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontol. Electron., 1(4): 1-9.
21. Zheng, H. and Lu, H. 2011. Use of Kinetic, Weibull and PLSR Models to Predict the Retention of Ascorbic Acid, Total Phenols and Antioxidant Activity during Storage of Pasteurized Pineapple Juice. LWT-Food Sci. Tech., 44: 1273-1281.
22. Sedman, J., Van de Voort, F. R. and Ismail, A. A. 1997. Application of Fourier Transform Infrared Spectroscopy in New Techniques and Application in Lipid Analysis. (Eds.): McDonald, R. E. and Mossoba, M. M.. AOCS Press, Illinois, PP. 283-324.
23. Zheng, H., Jiang, L. L., Lou, H. Q., Hu, Y., Kong, X. C. and Lu, H. F. 2011. Application of Artificial Neural Network (ANN) and Partial Least-Squares Regression (PLSR) to Predict the Changes of Anthocyanins, Ascorbic Acid, Total Phenols, Flavonoids, and Antioxidant Activity During Storage of Red Bayberry Juice Based on Fractal Analysis and Red, Green, and Blue (RGB) Intensity Values. J. Agric. Food Chem., 59: 592-600.
24. Tucker, G. A. 1993. Biochemistry of Fruit Ripening. (Eds.): Seymour, G. B., Taylor, J. E., Tucker, G. A. Chapman and Hall, London, PP.1-51.
25. Babani, F. and Lichtenthaler, H. K. 1996. Light-induced and Age-Dependent Development of Chloroplasts in Etiolated Barley Leaves as Visualized by Determination of Photosynthetic Pigment, CO2 Assimilation Rates and Different Kinds of Chlorophyll Fluorescence Ratios. J. Plant Physiol., 148: 555-566.
26. Jarén, C., Ortuño, J. C., Arazuri, S., Arana, J. I. and Salvadores, M. C. 2001. Sugar Determination in Grapes Using NIR Technology. Int. J. Infrared Millim. Waves, 22(10): 1521-1530.
27. Liu, Y. D., Ying, Y. B., Fu, X. P. and Lu, H. S. 2007. Experiments on Predicting Sugar Content in Apples by FT-NIR Technique. J. Food Eng., 80: 986-989.