Efficiency of Lignocellulolytic Extracts from Thermotolerant Strain Fomes sp. EUM1: Stability and Digestibility of Agricultural Wastes

Authors
1 Department of Biotechnology, Metropolitan Autonomous University-Iztapalapa, 09340. Mexico D. F. Mexico.
2 Department of Agricultural on Animal Production, Metropolitan Autonomous University-Xochimilco, 04969, Mexico D. F. Mexico.
3 Department of Zootechnics, Chapingo Autonomous University, 56235, Texcoco. Mexico.
4 IREGEP, Postgraduate College, 56230, Montecillo, Texcoco. Mexico.
Abstract
Production of lignocellulolytic enzymes by the thermotolerant Fomes sp. EUM1 was determined in solid cultures using corn stover (CS) as a sole substrate or supplemented with 20 % wheat bran (CS+WB). This supplementation increased (P< 0.05) enzymatic activity per gram of initial dry matter (gdm) for xylanases and cellulases: 160 IU g dm-1 and 37 IU g dm-1, respectively; while laccases reached a similar yield (3.3 IU g dm-1) for both cultures. Nevertheless, laccases showed different stability patterns at 39°C and pH 6: half-life time (t½) was doubled in extracts from CS+WB (23.5 h); whereas t½ for the other enzymes from both cultures showed no difference. Both extracts by Fomes sp. EUM1 and a commercial enzymatic product were used on forages: corn stover, (CS), sugarcane bagasse (SCB), and alfalfa hay (AH). The fractional rate of gas production (FR; ml g-1 h-1) increased (P< 0.05) at 9 hours in CS compared to the sample without enzymes. The use of any enzymes favoured higher maximum gas volume (Vm; h-1) on SCB. The in vitro digestibility (IVD) of CS after using the commercial product was 12% higher, while our extracts from CS and CS+WB showed 16 and 21% improvements (P< 0.05), respectively, suggesting a higher specificity of these enzymes produced on the same substrate (CS). In addition to the proven stability, the versatility of extracts from CS and CS+WB was confirmed by the increase in IVD values for SCB (up to 100%) in relation to the control without enzymes.

Keywords


1. Bourbonnais, R., Pice, M.G., Freiermuth, B., Bodie, E. and Borneman, S. 1997. Reactivities of Various Mediatiors and Laccases with Kraft Pulp and Lignin Model Compounds. Appl Environ Microb., 63: 4627-4632.
2. Colombatto, B. and Beauchemin, K. 2003. A Proposed Methodology to Standardize the Determination of Enzymatic Activities Present in Enzyme Additives Used in Ruminant Diets. Can. J. Anim Sci., 83: 559-5698.
3. Da Silva, R., Lago, E. S., Merheb, C. W., Macchione, M. M., Kun, P. Y. and Gomes, E. 2005. Production of Xylanase and CMCase on Solid State Fermentation in Different Residues by Thermoascus aurantiacus Miehe. Braz. J. Microbiol., 36: 235-241.
4. Elisashvili, V., Kachlishvili, E. and Penninckx, M. 2008. Effect of Growth Substrate, Method of Fermentation, and Nitrogen Source on Lignocellulose-degrading Enzymes Production by White-rot Basidiomycetes. J. Ind. Microbiol. Biotechnol., 35: 1531-1538.
5. Elisashvili, V., Kachlishvili, E., Tsiklauri, N., Metreveli, E., Khardziani, T. and Agathos, S. N. 2009. Lignocellulose-degrading Enzyme Production by White-rot Basidiomycetes Isolated from the Forests of Georgia. World J. Microbiol. Biotechnol., 25: 331-339.
6. Esmailizadeh A. K., Miraei-Ashtiani S. R., Mokhtari M. S. and Asadi Fozi, M. 2011. Growth Performance of Crossbred Lambs and Productivity of Kurdi Ewes as Affected by the Sire Breed under Extensive Production System. J. Agr. Sci. Tech., 13: 701-108.
7. Eun, J. S. and Beauchemin, K. A. 2007. Enhancing In vitro Degradation of Alfalfa Hay and Corn Silage Using Feed Enzymes. J. Dairy Sci., 90: 2839-2851.
8. Gisell, M. M., Vandenberghe, L. P. S., Haminiuk, C. W. I., Fendrich, R. C., Bianca, B. E., Quintella, T., Pandey, A. and Soccol, C. R. 2008. Xylanase Production by Aspergillus niger LPB226 in Solid-State Fermentation Using Statistical Experimental Desings. Food Technol. Biotechnol., 46: 183-189.
9. Grabber, J. H., Panciera, M. T. and Hatfield, R. D. 2002. Chemical Composition and Enzymatic Degradability of Xylem And Nonxylem Wall Isolate from Alfalfa Internodes. J. Agric. Food Chem., 50: 2595-2600.
10. Graciano, F. G., Avila, G. E., Fossati, S. L., Antunes, C. A. P. and Vieria, C. J. A. 2009. Protein Enrichment and Digestibility of Rush (Juncus effusus) and Rice Residues Using Edible Mushroom Pleurotus ostreatus and Pleurotus sajor-caju. World J. Microbiol. Biotechnol., 25: 449-456.
11. Graminha, E.B.N., Gonçalves, A.Z.L., Pirota, R.D.P.B., Balsalobre, M.A.A., Da Silva, R. and Gomes, E. 2008. Enzyme Production by Solid-state Fermentation: Application to Animal Nutrition. J Anim Sci., 144: 1-22.
12. Jalilvand, G., Odongo, N. E., López, S., Naserian, A., Valizadeh, R., Eftekhar, S., Kebreab, E. F. and France, J. 2008. Effects of Different Levels of an Enzyme Mixture on In Vitro Gas Production Parameters of Contrasting Forages. Anim. Feed Sci. Technol., 146: 289-301.
13. Levin, L., Herrmann, C. and Papinutti, L. 2008. Optimization of Lignocellulolytic Enzyme Production by the White-rot Fungus Trametes trogii in Solid-state Fermentation Using Response Surface Methodology. Biochem. Eng. J., 39: 207-214.
14. Llewellyn, D. A., Marston, T. T., Teutemacher, K. L., Higgins, J. J. and Melgarejo, T. 2010. Evaluation of Low Molecular Weight Fractions and Crude Enzyme Preparation from a Trichoderma Cellulose Complex as a Treatment for Fibrous Feeds. Anim. Feed Sci. Technol., 160: 39-48.
15. Loera, O. and Córdova, J. 2003. Improvement of Xylanase Production by a Parasexual Cross between Aspergillus niger Strains. Braz. Arch. Biol. Techn., 46:177-181.
16. Márquez-Araque, A. T., Mendoza, M. G. D., González, S., Buntinx, S. and Loera, O. 2007. Fibrolytic Activity of Enzymes Produced by Trametes sp. EUM1, Pleurotus ostreatus IE8 and Aspergillus niger AD96.4 in Solid Fermentation. Interciencia, 32(11): 780-785.
17. Márquez Araque, A. T., Mendoza Martínez, G. D., González Muñoz, S. S., Buntinx Dios, S., Meneses Mayo, M. and Loera-Corral, O. 2010. Degradation of Fibrolytic Enzymes from Trametes sp. EUM1, Pleurotus ostreatus IE8 and Fibrozyme®. Arch. Zootec., 59(225): 145-148.
18. Membrillo, I., Sánchez, C., Meneses, M., Favela, E. and Loera, O. 2008. Effect of Substrate Particle Size and Additional Nitrogen Source on Production of Lignocellulolytic Enzymes by Pleurotus ostreatus strains. Bioresource Technol., 99: 7842-7847.
19. Membrillo, I., Sánchez, C., Meneses, M., Favela, E. and Loera, O. 2011. Particle Geometry Affects Differentially Substrate Composition and Enzyme Profiles by Pleurotus ostreatus Growing on Sugar Cane Bagasse. Bioresource Technol., 102: 1581-1586.
20. Menke, K. and Steingass H. 1988. Estimation of the Energetic Feed Value Obtained from Chemical Analysis and In Vitro Gas Production Using Rumen Fluid. Anim. Res. Develop., 28: 7-55.
21. Miller, G. L. 1959. The Use of Dinitrosalicyclic Acid Reagent for the Determination of Reducing Sugar. Anal. Chem., 31: 426-428.
22. Najafi G., Ghobadian B., Tavakoli T., Yusaf T. 2009. Potential of Bioethanol Production from Agricultural Wastes in Iran. Renew. Sust. Energ. Rev., 13: 1418–1427.
23. Mondher, Th. Numan and Narayan B. Bhosle. 2006. α-L-Arabinofuranosidases: The Potential Applications in Biotechnology. J. Ind. Microbial. Biotechnol., 38: 1089-1098.
24. Ordaz, A., Favela, E., Meneses, M., Mendoza, G. and Loera, O. 2011. Hyphal Morphology Modification in Thermal Adaptation by the White-rot Fungus Fomes so. EUM1. J. Basic. Microb. In Press, DOI: 10.1002/jobm.201000528.
25. Papinutti, L., Dimitriu, P. and Forchiassin, F. 2008. Stabilization Studies of Fomes sclerodermeus Laccases. Bioresource Technol., 99: 419-424.
26. Papinutti, L. and Lechner, B. 2008. Influence of the Carbon Source on the Growth and Lignocellulolytic Enzyme Production by Morchella esculenta Strains. J. Ind. Microbiol. Biotechnol., 35: 1715-1721.
27. Peláez, A. A., Meneses, M. M., Miranda, R. L. A., Megías, R. M. D., Barcena, G. R. and Loera, O. 2008. Advantages of Solid Fermentation State with Pleurotus sapidus in Sugar Cane Silage. Arch. Zootec., 57: 25-33.
28. Pinos, J.M., González, M.S.S., Mendoza, M.G., Bárcena, G.R. and Cobos, P.M. 2001. Efecto de Enzimas Fibrolíticas Glucosiladas en la Digestibilidad In vitro de MS Y MO de Alfalfa (Medicago sativa) Y Ballico (Lolium perenne). Rev. Fac. Cienc. Vet., 6: 505-509.
29. Pinos, J. M., González, M. S., Mendoza, M. G., Bárcena, G. R. and Cobos, P. M. 2002. Efecto de Enzimas Fibrolíticas Exógenas en la Digestibilidad In vitro de la Pared Celular de Heno de Alfalfa (Medicago sativa) Y Ballico (Lollium perenne). Interciencia, 27: 28-32.
30. Ramírez, C. L., Aranda, E. I., Mendoza, G. D., Landois, P. L., Miranda, R. L. A. and Crosby, G. M. M. 2005. Caracterización de Productos Fibrolíticos Comerciales Utilizados en la Alimentación de Rumiantes. Vet. México, 36:1-9.
31. Rodrigues, M. A. M., Pinto, P., Bezerra, R. M. F., Dias, A. A., Guedes, C. V. M., Cardoso, V. M. G., Cone, J. W., Ferreira, L. M. M., Colaço, J. and Sequeira, C. A. 2008. Effect of Enzymes Extracts Isolated from White-Rot Fungi on Chemical Composition and in vitro Digestibility of Wheat Straw. Anim. Feed Sci. Technol., 141: 326-338.
32. Safari-Sinegani, A.A., Emtiazi, G., Hajrasuliha, S. 2006. Comparative Studies of Extracellular Fungal Lacacases under Different Conditions. J. Agric. Sci. Technol., 9: 69-76.
33. Sainos, E., Díaz-Godínez, G., Loera, O., Montiel-González, A. M. and Sánchez, C. 2006. Growth of Pleurotus ostreatus on Wheat Straw and Wheat-grain-based Media: Biochemical Aspects and Preparation of Mushroom Inoculum. Appl. Microbiol. Biot., 72: 812-815.
34. Sánchez, C. 2009. Lignocellulosic residues: Biodegradation and Bioconversion by Fungi. Biotechnol. Adv., 27: 185-194.
35. Santiago-Hernández, A., Vega-Estrada, J., Montes-Horcasitas, M. C. and Hidalgo-Lara, M. E. 2007. Purification and Characterization of Two Sugarcane Bagasse-Absorbable Thermophilic Cellulomonas flavigena. J. Ind. Microbiol. Biotechnol., 34: 331-338.
36. SAS. 1994. SAS/Stat User´s Guide Version 6.0. Fourth Edition, SAS Institute Inc. Cary, NC, USA.
37. Schofield, P. and Pell, A. N. 1995. Measurement and Kinetic Analysis of the Neutral Detergent Soluble Carbohydrate Fraction of Legumes Y Grass. J. Anim. Sci., 73: 3455-3463.
38. Suguimoto, H. H., Barbosa, A. M., Dekker, R. F. H. and Castro-Gomez, R. J. H. 2001. Veratryl Alcohol Stimulates Fruiting Body Formation in the Oyster Mushroom Pleurotus ostreatus. FEMS Microbiol. Lett., 194: 235-238.
39. Yang, W., Liu, J., Wang, W., Zhang, Y., Gao, P. 2004. Function of a Low Molecular Peptide Generated by Cellulolytic Fungi for the Degradation of Native Cellulose. Biotech. Lett., 26: 1799-1802.