Investigation of Black Mulberry Drying Kinetics Applying Different Pretreatments

Authors
1 Department of Physics, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Islamic Republic of Iran.
2 Department of Agricultural Machinery, Faculty of Agriculture, Urmia University, Urmia, Islamic Republic of Iran.
3 Department of Engineering, Shahre Rey Branch, Islamic Azad University, Tehran, Islamic Republic of Iran.
4 Department of Mechanic of Agricultural Machinery, Sari Agricultural Sciences and Natural Resources, University, Sari, Islamic Republic of Iran.
Abstract
Common drying systems, including hot air convection, infrared, vacuum and IR-convective were employed to investigate and analyze the drying process of mulberry fruits. To evaluate the effect of pretreatment on the drying phenomenon, samples were pretreated by being subjected to: microwaves, chemical preparation, mechanical as well as blanching approaches. Results revealed that the microwave pretreatment, integrated with IR-convective dryer required the lowest time needed for drying mulberries. Furthermore, the experimental data were fitted to semi empirical as well as theoretical models to achieve the most suitable function governing mulberry drying process. Eventually, Page Model proved to perform best with regard to its high coefficient of determination, low value of χ2 and root mean square of error.

Keywords


1. Afzal, T. M. and Abe, T. 1999. Some Fundamental Attributes of Far Infrared Radiation Drying of Potato. Drying Tech., 17: 137-155.
2. Afzal, T. M., Abe, T. and Hikida, Y. 1999. Energy and Quality Aspects during Combined Fir-Convection Drying of Barley. J. Food Eng., 42: 177-182.
3. Akpinar, E., Midilli, A. and Bicer, Y. 2003. Single Layer Drying Behavior of Potato Slices In a Convective Cyclone and Mathematical Modeling. J. Energy Con. Manage., 44: 1689–1705.
4. Arevalo-Pinedo, A. and Fernanda, E. X. 2007a. Kinetics of Vacuum Drying Of Pumpkin (Cucurbita Maxima): Modeling With Shrinkage. J. Food Eng., 76: 562–567.
5. Ayensu, A. 1997. Dehydration of Food Crops Using a Solar Dryer with Convective Heat Flow. Solar Energy, 59: 121–126.
6. Babalis, S. J., Papaniclaou, E., Kyriakis, N. and Belessiotis, V. G. 2005. Evaluation of Thin-layer Drying Models for Describing Drying Kinetics of Figs (Ficus carica). J. Food Eng., 75: 205–214.
7. Caglar, A., Togrul, I. T. and Togrul, H. 2009. Moisture and Thermal Diffusivity of Seedless Grape under Infrared Drying. Food Biop. Process., 87: 292–300.
8. Celma, R. A., Rojas, S. and Lopez-Rodrıguez, F. 2008. Mathematical Modelling of Thin-layer Infrared Drying of Wet Olive Husk. Chem. Eng. Process., 47: 1810–1818.
9. Celma, R. A., López-Rodríguezb, F. and Cuadros Blázquezc, F. 2009. Experimental Modelling of Infrared Drying of Industrial Grape By-Products. Food Bioprod. Proces., 87: 247–253.
10. Chhinnan, M. S. 1984. Evaluation of Selected Mathematical Models for Describing Thin-layer Drying of In-shell Pecans. Trans. ASAE, 27: 610–615.
11. Dandamrongrak, R., Young, G. and Mason, R. 2002. Evaluation of Various Pre-treatments for the Dehydration of Banana and Selection of Suitable Drying Models. J. Food Eng., 95: 139–146.
12. Diamente, L. M. and Munro, P. A. 1991. Mathematical Modeling of Hot Air Drying of Sweet Potato Slices. Int. J. Food Sci. Tech., 26: 99-109.
13. Doymaz, I. and Ismail, O. 2011. Drying Characteristics of Sweet Cherry. Food Biop. Process., 89: 31–38.
14. Doymaz, I. and Pala, M. 2002. Hot-air Drying Characteristics of Red Pepper. J. Food Eng., 55: 331-335.
15. Doymaz, I. 2005. Influence of Pretreatment Solution on the Drying of Sour-cherry. J. Food Eng., 78: 591-596.
16. Doymaz, I. 2004. Drying Kinetics of White Mulberry. J. Food Eng., 61: 341-346.
17. Doymaz, I. 2010. Effect of Citric Acid and Blanching Pre-treatments on Drying and Rehydration of Amasya Red Apples. Food Biop. Process., 88: 124–132.
18. Ertekin, C. and Yaldiz, O. 2004. Drying of Eggplant and Selection of a Suitable Thin Layer Drying Model. J. Food Eng., 63: 349–359.
19. Fernandes, F. A.N. and Rodrigues, S. 2007. Ultrasound as Pre-treatment for Drying of Fruits: Dehydration of Banana. J. Food Eng., 82: 261–267.
20. Fernandes, F. A. N., Linhares, J. R. and Rodrigues, S. 2008. Ultrasound as Pre-treatment for Drying of Pineapple. Ultrasonics Sonochemistry, 15: 1049–1054.
21. Fernando, W. J. N. and Thangavel, T. 1987. Vacuum Drying Characteristics of Coconut. Drying Tech., 5(3): 363–372.
22. Garcıa-Perez, J. V., Carcel, J. A., Dela Fuente, S. and Riera, E. 2006a. Ultrasonic Drying of Foodstuff in a Fluidized Bed: Parametric Study. Ultrasonic’s, 44: 539–543.
23. Jaturonglumlert, S. and Kiatsiriroat, T. 2010. Heat and Mass Transfer in Combined Convective and Far-Infrared Drying of Fruit Leather. J. Food Eng., 100: 254–260.
24. Jaya, S. and Das, H. 2003. A Vacuum Drying Model for Mango Pulp. Drying Tech., 21(7): 1215–1234.
25. Lee, J. H. and Kim, H. J. 2009. Vacuum Drying Kinetics of Asian White Radish (Raphanus sativus L.) Slices. Food Sci. Tech., 42: 180–186.
26. Menges, H.O. and Ertekin, C. 2005. Mathematical Modeling of Thin Layer Drying of Golden Apples. J. Food Eng., l77: 119-125.
27. Motavali, A., Najafi, G.H., Abbasi, S., Minaei, S. and Ghaderi, A. 2011a. Microwave–vacuum Drying of Sour Cherry: Comparison of Mathematical Models and Artificial Neural Networks. J. Food Sci. Technol., DOI 10.1007/s13197-011-0393-1.?
28. Motevali, A., Minaei, S. and Khoshtagaza, M. H. 2011b. Evaluation of Energy Consumption in Different Drying Methods. Energy Con. Manag., 52 (2): 1192-1199.
29. Motevali, A., Minaei, S. and Khoshtaghaza, M. H., Kazemi, M. and Mohamad Nikbakht, A. 2010. Drying of Pomegranate Arils: Comparison of Predictions from Mathematical Models and Neural Networks. Int. J. Food Eng., 6 (3): 1-20.
30. Mousavi, M. and Javan, S. 2009. Modeling and Simulation of Apple Drying, Using Artificial Neural Network and Neuro-Taguchi’s Method, J. Agri. Sci. Tech., 11: 559-571.
31. Mulet, A., Carcel, J. A., Sanjuan, N. and Bon, J. 2003. New Food Drying Technologies–use of Ultrasound. Food Sci. Technol. Int., 9: 215- 221.
32. Navari, P., Andrieu, J. and Gevaudan, A. 1992. Studies on Infrared and Convective Drying of Non Hygroscopic Solids. In: "Drying 92", (Ed.): Mujumdar, A. S.. Elsevier, Amsterdam, PP. 685–694.
33. Pathare, P. B. and Sharma, G. P. 2006. Effective Moisture Diffusivity of Onion Slices undergoing Infrared Convective Drying. Biosys. Eng., 93(3): 285–291.
34. Pawar, S., Kumar, P., Mujumdar, A. S. and Thorat, B. 2008. Infrared Convective Drying of Organic Pigments. Drying Tech., 26: 315–322.
35. Rafiee, Sh., Keyhani, M., Sharifi, H., Jafari, A., Mobli, H. and Tabatabaeefar, A. 2009. Thin Layer Drying Properties of Soybean (Viliamz Cultivar). J. Agri. Sci. Tech., 11: 289-300.
36. Ratti, C. and Mujumdar, A.S. 1995. Infrared Drying. In: "Handbook of Industrial Drying", (Ed.): Mujumdar, A. S.. Third Edition, Marcel Dekker, New York, PP. 567–588.
37. Sharma, G. P., Verma, R. C., Pathare, P. B. 2005. Thin-Layer Infrared Radiation Drying of Onion Slices. J. Food Eng., 67: 361–366.
38. Shi, J., Pan, Z., McHugh, T. H., Wood, D., Hirschberg, E. and Olson, D. 2008. Drying and Quality Characteristics of Fresh and Sugar-Infused Blueberries Dried With Infrared Radiation Heating. LWT- Food Sci. Tech., 41: 1962-1972.
39. Simal, S., Femenia, A., Garau, M.C. and Rossello, C. 2005. Use of Exponential, Page’s and Diffusional Models to Simulate the Drying Kinetics of Kiwi Fruit. J. Food Eng., 66: 323-328.
40. Tahmasebi, M., Tavakoli Hashjin, T., Khoshtaghaza, M. H. and Nikbakht, A. M. 2011. Evaluation of Thin-Layer Drying Models for Simulation of Drying Kinetics of Quercus (Quercus persica And Quercus libani). J. Agri. Sci. Tech., 13: 155-163.
41. Tarleton, E.S., Wakeman, R.J., Povey, M.J.W. and Mason, T.J. 1998. Ultrasounds in Food Processing. Blackie Academic and Professional, Glasgow, PP. 193–218.
42. Umesh Hebbar, H., Vishwanathan, K. H. and Ramesh, M.N. 2004. Development of Combined Infrared and Hot Air Dryer for Vegetables. J. Food Eng., 65: 557–563.
43. Valo-Pinedo, A. A. and Xidieh Murr, F. E. 2007b. Influence of Pre-treatments on the Drying Kinetics during Vacuum Drying of Carrot and Pumpkin. J. Food Eng., 80: 152–156.
44. Verma, L. R., Bucklin, R. A., Endan, J. B. and Wratten, F. T. 1985. Effects of Drying Air Parameters on Rice Drying Models. Trans. ASAE, 28: 296–301.
45. Wang, Z., Sun, J., Liao, X., Chen, F., Zhao, G., Wu, J. and Hu, X. 2007. Mathematical Modeling on Hot Air Drying of Thin Layer Apple Pomace. Food Res. Int., 40: 39–46.
46. Wang, C. Y. and Singh, R. P. 1978. Use of Variable Equilibrium Moisture Content in Modeling Rice Drying. Trans. ASAE, 11: 668-672.
47. Zomorodian, A. and Moradi, M. 2010. Mathematical Modeling of Forced Convection Thin Layer Solar Drying for Cuminum cyminum. J. Agri Sci. Tech., 12: 401-408.