1. Beuselinck, L., Govers, G., Poesen, J. and Degraer Froyen, G. 1998. Grain-size Analysis by Laser Diffractometry: Comparison with the Sieve-pipette Method. Catena, 32: 193-208.
2. Blott, S. S. and Pye, K. 2001. Gradistat: A Grain Size Distribution and Statistics Package for the Analysis of Unconsolidated Sediment. Earth. Surf. Proc. Land, 26(11): 1237-1248.
3. Chaudhari, S. K., Singh. R. and Kundu, D. K. 2008. Rapid Textural Analysis for Saline and Alkaline Soils with Different Physical and Chemical Properties. Soil Sci. Soc. Am. J., 72: 431-441.
4. De Boer, D. H. 1997. Changing Contribution of Suspended Sediment Sources in Small Basins Resulting from European Settlement on the Canadian Prairies. Earth. Surf. Proc. Land. 22: 623–639.
5. Edwards, T. K. and Glysson, G. D. 1999. Field Methods for Measurement of Fluvial Sediment. USGS Open-file Report Book, 3(2): 1−97.
6. Folk, R. L. and Ward, W.C. 1957. Brazos River Bar: A Study in the Significance of Grain-Size Parameters. J. Sedi. Petrol., 27(1): 3–26.
7. Hardy, M. and Cornu, S. 2006. Location of Natural Trace Elements in Silty Soils Using Particle-size Fractionation. Geoderma, 133: 295–308.
8. Haritashya, U.K., Kumar, A. and Singh, P. 2010. Particle Size Characteristics of Suspended Sediment Transported in Melt Water from the Gangotri Glacier, Central Himalaya: An Indicator of Subglacial Sediment Evacuation. Geomorphology, 122: 140–152.
9. Indorante, S. J., Hammer, R. D. and Koenig, P.G. 1990. Particle-size Analysis by a Modified Pipette Procedure. Soil Sci. Soc. Am. J., 54: 560-563.
10. Jillavenkatesa, A., Dapkunas, S. J. and Lum, L. H. 2001. Particle Size Characterization. US Department of Commerce, Technology Administration, National Institute of Standards and Technology; Washington, DC, 164 PP.
11. Khaledi Darvishan, A. V., Sadeghi, S. H. R., Vafakhah, M. and Gholami, L. 2008. Recognition of Effective Physical Characteristics of Watershed on Bed Sediment Morphometry (Case Study: Vaz River). Iran-Water Resour. Res., 4(1): 75-78.
12. Kim, J. Y. and Sansalone, J. J. 2008. Event-based Size Distributions of Particulate Matter Transported during Urban Rainfall-runoff Events. Water Res., 42(10-11): 2756-2768.
13. Kim, C. S. and Lim, H. 2009. Sediment Dispersal and Deposition Due to Sand Mining in the Coastal Waters of Korea. Cont. Shelf Res., 29(1):194-204.
14. Krishnappan, B. G. 2000. In situ Size Distribution of Suspended Sediment Particles in the Fraser River. J. Hydrol. Eng., ASCE, 126: 561-569.
15. Liu, T. K., Odell, R. T., Etter, W. C. and Thornburn, T. H. 1966. A Comparison of Clay Contents Determined by Hydrometer and Pipette Method Using Reduced Major Axis Analysis. Soil Sci. Soc. Am. J., 30: 665-669.
16. Montagne, D., Cornu, S., Forestier, L. Le., Hardy, M., Josière, O., Caner, L. and Cousin, I. 2008. Impact of Drainage on Soil-forming Mechanisms in a French Albeluvisol: Input of Mineralogical Data in Mass-balance Modeling. Geoderma, 145: 425-438.
17. Naik, P. K. and Jay, D. A. 2011. Distinguishing Human and Climate Influences on the Columbia River: Changes in Mean Flow and Sediment Transport. J. Hydrol., 404(3-4): 259-277.
18. Naime, J. M., Vaz, C. M. P. and Macedo, A. 2001. Automated Soil Particle Size Analyzer Based on Gamma-ray Attenuation. Comput. Electron. Agr., 31: 295–304.
19. Neal, C., Robson, A. J., Wass, P., Wade, A. J., Ryland, G. P., Leach, D. V. and Leeks, G. J. L. 1998. Major, Minor, Trace Element and Suspended Sediment Variations in the River Derwent. Sci. Total Environ., 210/211: 163–172.
20. Peters, B. G. T. M. and Hulscher, S. J. M. H. 2006. Large-scale Offshore Sand Extraction: What Could Be the Results of Interaction between Model and Decision Process. Ocean Coast. Manage., 49: 164–187.
21. Poizot, E., Méar, Y. and Biscara, L. 2008. Sediment Trend Analysis through the Variation of Granulometric Parameters: A Review of Theories and Applications. Earth-Sci. Rev., 86: 15–41.
22. Putjaroon, W. and Pongboon, K. 1987. Amount of Runoff and Soil Losses from Various Land-use Sampling Plots in Sakolnakorn Province, Thailand. Forest Hydrology and Watershed Management-Hydrologie Forestiere et Amenagement des Bassins Hydrologiques (Proceedings of the Vancouver Symposium, August 1987; Actes du Co11oque de Vancouver, AoGt 1987).IAHS-AISH Pub 1, No. 167, 1987.
23. Rovira, A. and Batalla, R. J. 2006. Temporal Distribution of Suspended Sediment Transport in a Mediterranean Basin: The Lower Tordera (NE SPAIN). Geomorphology, 79: 58–71.
24. Sadeghi, S. H. R., Kiani Harchegani, M. and Younesi, H. A. 2012. Suspended Sediment Concentration and Particle Size Distribution and Their Relationship with Heavy Metals Contents, J. Earth Sys. Sci., 121(1):63-71
25. Sadeghi, S. H. R., Aghabeigi Amin, S., Vafakhah, M., Yasrebi, B. and Esmaeili Sari, A. 2006. Suitable Drying Time for Suspended Sediment Samples, Iran. In Proceeding of International Sediment Initiative Conference, Nov. 12-16, 2006, Khartoum, Sudan, 71 PP.
26. Sadeghi, S. H. R., Mizuyama, T., Miyata, S., Gomi, T., Kosugi, K., Fukushima, T., Mizugaki, S. and Onda, Y. 2008. Determinant Factors of Sediment Graphs and Rating Loops in a Reforested Watershed. J. Hydrol., 356: 271–282.
27. Sadeghi, S. H. and Saeidi, P. 2010. Reliability of Sediment Rating Curves for a Deciduous Forest Watershed in Iran. Hydrol. Sci. J., 55(5): 821–831.
28. Siakeu, J., Oguchi, T., Aokic, T., Esaki, Y. and Jarvie, H. P. 2004. Change in Riverine Suspended Sediment Concentration in Central Japan in Response to Late 20th Century Human Activities. Catena, 55: 231–254.
29. Singh, K. P., Mohan, D., Singh, V. K. and Malik, A. 2005. Studies on Distribution and Fractionation of Heavy Metals in Gomti River Sediments: A Tributary of the Ganges, India. J. Hydrol., 312: 14–27.
30. Slattery, M. C. and Burt, T. P. 1997. Particle Size Characteristics of Suspended Sediment in Hillslope Runoff and Stream Flow. Earth Surf. Proc. Land., 22: 705-719.
31. Walling, D. E. 1988. Erosion and Sediment Yield Research: Some Resent Perspectives. J. Hydrol., 100: 113-141.
32. Walling, D. E. 1997. The Response of Sediment Yield to Environmental Change. In: "Human Impact on Erosion and Sedimentation", (Eds.): Walling, D. E. and Probst, J. L. IAHS Publ., IAHS Press, Wallingford, 245: 77-89.
33. Walling, D. E. and Moorehead, P. W. 2004. The Particle Size Characteristics of Fluvial Suspended Sediment: An Overview. Hydrobiologia, 176/177: 125-149.
34. Walling, D. E., Owens, Ph. N., Waterfall, B. D., Leeks, G. J. L. and Wass P. D. 2000. The Particle Size Characteristics of Fluvial Suspended Sediment in the Humber and Tweed Catchments, UK. Sci. Total Environ., 251/252: 205-222.
35. Walling, D. E. and Woodward, J. C. 1993. Use of a Field-based Water Elutriation System for Monitoring the In situ Particle Size Characteristics of Fluvial Suspended Sediment. Water Res., 27: 1413-1421.
36. Williams, N. D., Walling, D. E. and Leeks, G. J. L. 2007. High Temporal Resolution In situ Measurement of the Effective Particle Size Characteristics of Fuvial Suspended Sediment. Water Res., 41: 1081-1093.
37. Zapata, F. 2003. Handbook for the Assessment of Soil Erosion and Sedimentation Using Environmental Radionuclides, Kluwer Academic, 219 PP.
38. Zhang, Q., Xu, Ch., Becker, S. and Jiang, T. 2006. Sediment and Runoff Changes in the Yangtze River Basin during Past 50 Years. J. Hydrol., 331: 511-523.