Pre-incubation of Sinorhizobium meliloti with Luteolin, Methyl jasmonate and Genistein Affecting Alfalfa (Medicago sativa L.) Growth, Nodulation and Nitrogen Fixation under Salt Stress Conditions

Authors
1 Department of Agronomy, College of Agriculture and Natural Resources, University of Tehran, Karaj, Islamic Republic of Iran.
2 Department of Soil Biology, Soil and Water Research Institute, Karaj, Islamic Republic of Iran.
3 Department of Biology, Dresden University, Dresden, Germany.
Abstract
Salinity is among important soil stresses adversely affecting the process of nitrogen (N) fixation in leguminous plants in different parts of the world. It has been indicated that salinity can inhibit the early stages of nodulation process between bacterium and the host plant including the exchange of signal molecules (nod gene inducers). There has not been any research regarding the effects of nod gene inducers on the growth of alfalfa inoculated with Sinorhizobium meliloti under saline conditions. A growth chamber experiment was conducted to determine the effects of pre-incubation of S. meliloti with effective inducers of nod genes Luteolin, Methyl jasmonate and Genistein on the growth and N-fixation of two different alfalfa (Medicago sativa L.) cultivars (Yazdi and Hamedani) under salt stress. Nod gene inducers increased alfalfa growth and N fixation under normal as well as under salt stressed conditions. Yazdi cultivar showed to be more tolerant to salinity than Hamedani with a higher growth rate and N fixation. Luteolin was the most effective nod gene inducer on plant growth and N fixation under normal and as well under salt stressed conditions. The results suggest that pre-incubation of S. meliloti with effective nod gene inducers can improve alfalfa growth and N fixation under salinity stress.

Keywords


1. Ahlawat, A., Jain, V. and Nainawatee, H. S. 1998. Effect of Low Temperature and Rhizospheric Application of Narigenin on Pea-Rhizobium leguminosarum Biovar viciae Symbiosis. J. Plant Biochem. Biotechnol., 7: 35-38.
2. Alexander, M. 1985. Enhancing Nitrogen Fixation by Use of Pesticides: A Review. Adv. Agron., 38: 267-282.
3. Bandyopadhyay, A. K., Jain, V. and Nainawate. H. S. 1996. Nitrate Alters the Flavonoid Profile and Nodulation in Pea (Pisum sativum L.). Biol. Fert. Soils, 21: 189-192.
4. Beck, D. P., Materon, L. A. and Afandi, F. 1993. Practical Rhizobium–legume Technology Manual: Technical Manual no.19. ICARDA, Aleppo.
5. Begum, A. A., Leibovitch, S., Migner P. and Zhang, F. 2001a. Inoculation of Pea (Pisum sativum L.) by Rhizobium leguminosarum bv. viceae Preincubated with Naringenin and Hesperetin or Application of Naringenin and Hesperetin Directly into Soil Increased Pea Nodulation under Short Season Conditions. Plant Soil, 237: 71–80.
6. Begum, A. A., Leibovitch, S., Migner, P. and Zhang, F. 2001b. Specific Flavonoids Induced Nod Gene Expression and Pre-activated Nod Gene of Rhizobium leguminisarum Increased Pea (Pisum sativum L.) and Lentil (Lens culinaris L.) Nodulation in Controlled Growth Chamber Environments. J. Exp. Bot., 52: 1537 -1543.
7. Bekki, A., Trinchant, J. C. and Rigaud, J. 1987. Nitrogen Fixation (C2H2 Reduction) by Medicago Nodules and Bacteroids under Sodium Chloride Stress. Physiol. Plant., 71: 61-67.
8. Belkheir, A. M., Zhou, X. and Smith, D. L. 2000. Response of Soybean [Glycine max (L.) Merr] Cultivars to Genistein Preincubated Bradyrhizobium japonicum: Nodulation and Dry Matter Accumulation under Canadian Short-season Conditions. J. Agro. Crop Sci., 185: 167 -175.
9. Bilgrami, K. 1989. Plant-Microbe Interactions. Narendra Publishing House, India, PP. 1–10.
10. Brewin, N. J. 1991. Development of the Root Nodule. Annu. Rev. Cell. Biol., 7: 191-226.
11. Brown, D. E., Rashotte, A. M., Murphy, A. S., Normanly, J., Tague, B. W., Peer, W. A., Taiz, L. and Muday, G. K. 2001. Flavonoids Act as Negative Regulators of Auxin Transport In vivo in Arabidopsis. Plant Physiol., 126: 524-535.
12. Capela, D., Carrere, S. and Batut. J. 2005. Transcriptom-based Identification of Sinorhizobium meliloti Nod D1 Regulon. App. Environ. Microbiol., 8: 4910 - 4913.
13. Davis, E. O. and Johnston, A. W. B. 1990. Regulatory Functions of the Three NodD Genes of Rhizobium leguminosarum Biovar phaseoli. Mol. Microbiol., 4: 933-941.
14. Denarie, J. and Cullimore, J. 1993. Lipo-oligosaccaride Nodulation Factors: A New Class of Signaling Molecules Mediating Recognition and Morphogenesis. Cell, 74: 951-954.
15. Devoto, A. and Turner, J. G. 2003. Regulation of Jasmonate-mediated Plant Responses in Arabidopsis. Ann. Bot., 92: 329-337.
16. Fougere, F., Rudulier, D. L. and Streeter, J. G. 1991. Effect of Salt Stress on Amino Acid, Organic Acid, and Carbohydrate Composition of Roots, Bacteroids, and Cytosol of Alfalfa (Medicago sativsa L.). Plant Physiol., 96: 1228-1236.
17. Hartwig, U. A., Maxwell, C. A., Joseph, C. M. and Phillips, D. A. 1990. Chrysoeriol and Luteolin Released from Alfalfa Seeds Induce Nod Genes in Rhizobium meliloti. Plant Physiol., 92:116–122.
18. Hartwig, U. A., Joseph C. M. and Phillips, D. A. 1991. Flavonoids Released Naturally from Alfalfa Seeds Enhance Growth Rate of Rhizobium meliloti. Plant Physiol., 95: 797 -803.
19. Herdina, J. A. and Silsbury, J. H. 1990. Estimating Nitrogenase Activity of Faba Bean (Vicia faba L.) by Acetylene Reduction (AR) Assay. Aust. J. Plant Physiol., 17: 489-502.
20. Hirsch, A. M. 1992. Developmental Biology of Legume Nodulation. New Phytol., 122: 211-237.
21. Hirsch, A. M, Lum, M. R. and Downie, J. A. 2001. What Makes the Rhizobia-legume Symbiosis so Special? Plant Physiol., 127: 1484–1492.
22. Hoagland, D. R. and Arnon, D. I. 1950. The Water-culture Method for Growing Plants Without Soil. California Agric. Exp. Stn. Circ., 374: 1-32.
23. Howe, G. A. 2004. Jasmonates. In: "Plant Hormones: Biosynthesis, Signal Transduction, Action", (Ed.): Davies, P. J.. Kluwer Academic Publishers, Dordrecht, Boston, London, PP. 610–634.
24. Howieson, J. G., Nutt B. and Evans, P. 2000. Estimation of Host-strain Compatibility for Symbiotic N-fixation between Rhizobium meliloti, Several Annual Species of Medicago and Medicago sativa. Plant Soil, 219: 49- 55.
25. Hubac, C., Ferran, J., Guerrier, D., Tremolieres A. and Kondorosi. A. 1993. Luteolin Absorption in Rhizobium meliloti Wild-type and Mutant Strains. J. Gen. Microbiol., 139: 1571-1 578.
26. Hungria, M., Joseph, C. M. and Philips, D. A. 1991. Rhizobium Nod-gene Inducers Exuded Naturally from Roots of Common Bean (Phaseolus vulgaris L.). Plant Physiol., 97: 759–764.
27. Ikeda, J. 1994. The Effect of Short Term Withdrawal of NaCl Stress on Nodulation of White Clover. Plant Soil, 158: 23-27.
28. Kahindi, J. P., Woomer, P., George, T., Moreira, F. D., Karanja N. K. and Giller. K. E. 1997. Agricultural Intensification, Soil Biodiversity and Ecosystem Function in the Tropics: The Role of Nitrogen-fixation Bacteria. Appl. Soil Ecol., 6: 55-76.
29. Lira, M. A., Costa, C. and Smith, D. L. 2003. Effect of Addition of Flavonoid Signals and Environmental Factors on Nodulation and Nodule Development in the Pea (Pisum sativum)-Rhizobium leguminosarum bv. viciae Symbiosis. Aust. J. Soil Res., 41: 267-276.
30. Long, S. R. 1989. Rhizobium-legume Nodulation: Life Together in the Under-ground. Cell, 56: 203-214.
31. Long, S. 2001. Genes and Signals in the Rhizobium-legume Symbiosis. Plant Physiol., 125: 69-72.
32. Mabood, F. and Smith, D. L. 2005. Pre-incubation of Bradyrhizobium japonicum with Jasmonates Accelerates Nodulation and Nitrogen Fixation in Soybean (Glycine max L.) at Optimal and Suboptimal Root Zone Temperatures. Physiol. Plantarum., 125: 311-323.
33. Mabood, F., Souleimanov, A., Khan, W. and Smith, D. L. 2006a. Jasmonates Induce Nod Factor Production by Bradyrhizobium japonicum. Plant Physiol. Biochem., 44: 759-765.
34. Mabood, F., Xiaomin, X. and Smith, D. L. 2006b. Bradyrhizobium japonicum Preincubated with Methyl Jasmonate Increases Soybean Nodulation and Nitrogen Fixation. Agron. J., 98: 289-294.
35. Miransari, M., Bahrami, H. A., Rejali, F. and Malakouti, M. J. 2008. Using Arbuscular Mycorrhiza to Alleviate the Stress of Soil Compaction on Wheat (Triticum aestivum L.) Growth. Soil Biol. Biochem., 40: 1197-1260.
36. Miransari, M. and Smith, D. L. 2007. Overcoming the Stressful Effects of Salinity and Acidity on Soybean [Glycine max (L.) Merr.] Nodulation and Yields Using Signal Molecule Genistein under Field Conditions. J. Plant Nutr., 30: 1967–1992.
37. Miransari, M. and Smith, D. L. 2009. Alleviating Salt Stress on Soybean (Glycine max (L.) Merr)-Bradyrhizobium japonicum Symbiosis, Using Signal Molecule Genistein. Eur. J. Soil Biol., 45: 146-152.
38. Miransari, M., Smith, D. L., Mackenzie, A. F., Bahrami, H. A., Malakouti, M. J. and Rejali, F. 2006. Overcoming the Stressful Effect of Low pH on Soybean Root Hair Curling Using Lipochitooligosaccahrides. Commun. Soil Sci. Plant Anal., 37: 1103–1110.
39. Novak, K., Chovanec, P., Skrdleta, V., Kropacova, M., Lisa, L. and Nemcova, M. 2002. Effect of Exogenous Flavonoids on Nodulation of Pea (Pisum sativum L.). J. Exp. Bot., 53: 1735 -1745.
40. Pan, B. and Smith. D. L. 2000. Preincubation of B. japonicum Cells with Genistein Reduces the Inhibitory Effects of Mineral Nitrogen on Soybean Nodulation and Nitrogen Fixation under Field Conditions. Plant Soil, 223: 235-242.
41. Pan, B., Zhang, F. and Smith, D. L. 1998. Genistein Addition to the Rooting Medium of Soybean at the Onset of Nitrogen Fixation Increases Nodulation. J. Plant Nutr., 21: 1631-1639.
42. Phillips, D. A. and Tasi, S. M. 1992. Flavonoids as Plant Signals to Rhizosphere Microbes. Mycorrhiza, 1: 55-58.
43. Poustini, K., Mabood, F. and Smith. D. L. 2005. Low Root Zone Temperature Effects on Bean (Phaseolus vulgaris L.) Plants Inoculated with Rhizobium leguminosarum bv. phaseoli Pre-incubated with Metyl Jasmonate and/or Genistein. Acta Agric. Scand. Sect. B Soil Plant Sci., 55: 293-298.
44. Poustini, K., Mabood, F. and Smith, D. L. 2007. Preincubation of Rhizobium leguminosarum bv. phasreoli with Jasmonate and Genistein Signal Molecules Increases Bean (Phaseolus vulgaris L.) Nodulation, Nitrogen Fixation and Biomass Production. J. Agric. Sci. Technol., 9: 107-117.
45. Rasse, D. P. and Smucker, A. J. M. 1999. Tillage Effects on Soil Nitrogen and Plant Biomass in a Corn-alfalfa Rotation. J. Environ. Qual., 28: 873-880.
46. Rhijin, P. V. and Vanderleyden, J. 1995. The Rhizobium-plant Symbiosis. Microbiol. Rev., 59: 124-142.
47. Richardson, A. F., Djordjevic, M. A., Rolf, B. G. and Simpson, R. J. 1998. Effects of pH and A1 on the Exudation from Clover Seedlings of Compounds that Induce the Expression of Nodulation Genes in Rhizobium trifoli. Plant Soil, 109: 37-47.
48. Rosas S., Soria, S., Correa, N. and Abdala, G. 1998. Jasmonic Acid Stimulates the Expression of Nod Gene in Rhizobium. Plant Mol. Biol., 38: 1161-1168.
49. Shannon, M., 1984. Adaptation of Plants to Salinity. United States Department of Agriculture, Adv. Agron., 60: 75-120.
50. Verma, D. P. S. 1992. Signals in Root Nodule Organogenesis and Endocytosis of Rhizobium. Plant Cell, 4: 373-382.
51. Zahran, H. H. and Sprent, J. I. 1986. Effects of Sodium Chloride and Polyethylene Glycol on Root-hair Infection and Modulation of Vicia faba L. Plants by Rhizobium leguminosarum. Planta, 167: 303-309.
52. Zhang, F. and Smith, D. L. 1995. Preincubation of Bradyrhizobium japonicum with Genstein Accelerated Nodule Development of Soybean at Suboptimal Root Zone Temperatures. Plant Physiol., 108: 961-968.
53. Zhang, F. and Smith. D. L. 1996. Inoculation of Soybean (Glycine max (L.) Merr) with Genistein-preincubated Bradyrhizobium japonicum or Genistein Directly Applied into Soil Increases Soybean Protein and Dry Matter Yield under Short Season Condition. Plant Soil, 179: 233-241.
54. Zhang, F. and Smith, D. L. 1997. Application of Genistein to Inocula and Soil to Overcome Low Spring Soil Temperature Inhibition of Soybean Nodulation and Nitrogen Fixation. Plant Soil, 192: 141-151.