Modeling Some Drying Characteristics of High Moisture Potato Slices in Fixed, Semi Fluidized and Fluidized Bed Conditions

Author
Department of Agricultural Machinery Engineering, Faculty of Agriculture, Bu Ali Sina University, Hamedan, Islamic Republic of Iran.
Abstract
Drying properties of high moisture potato slices with initial moisture content of about 4.06 (db) under thin layer fixed, semi fluidized and fluidized bed conditions were studied. Drying air temperatures of 40, 50, 60 and 70°C were applied in experiments using a laboratory fluidized bed convective dryer. In order to predict the drying behavior of potato slices, seven thin layer drying models were applied from where finally Midilli et al. model was selected as the suitable one, based on comparative indices. Effective moisture diffusivity of the potato slices varied between 4.29×10-9 and 15.70×10-9 m2 s-1 for fixed and fluidized bed conditions, respectively. Moisture diffusivity values of the slices were increased as the drying air temperature levels increased. Activation energy values varied between 15.88 and 24.95 kJ mol-1. Minimum and maximum values of activation energy were obtained at minimum fluidized and fixed bed conditions, respectively. Consumption of specific energy for thin layer drying of high moisture potato slices was obtained between 0.45×105 and 1.64×105 (kJ kg-1). Increase in the drying air temperature in each bed condition caused increase in energy consumption. The maximum value of energy consumption was obtained at fluidized bed conditions.

Keywords


1. Aghbashlo, M., Kianmehr, M. H., Khani, S. and Ghasemi, M. 2009. Mathematical Modeling of Thin-layer Drying of Carrot. Int. Agrophysics, 23: 313-317.
2. AOAC. 2002. Official Methods of Analysis. 17th Edition, Association of Official Analytical Chemists, Arlington, USA.
3. Arumuganathan, T., Manikantan, M. R., Rai, R. D., Anandakumar, S. and Khare, V. 2009. Mathematical Modeling of Drying Kinetics of Milky Mushroom in a Fluidized Bed Dryer. Int. Agrophysics, 23: 1-7.
4. Babalis, S. J. and Belessiotis, V. G. 2004. Influence of Drying Conditions on the Drying Constants and Moisture Diffusivity during the Thin-layer Drying of Figs. J. Food Eng., 65: 449–58.
5. Bondaruk, J., Markowski, M. and Błaszczak, W. 2007. Effect of Drying Conditions on the Quality of Vacuum-microwave Dried Potato Cubes. J. Food Eng., 81: 306–312.
6. Brooker, D. B., Bakker-Arkema, F. W. and Hall, C. W. 1992. Drying and Storage of Grains and Oilseeds. AVI Publishing, Van Nostrand Reinold, New York, PP.450.
7. Cihan, A., Kahveci, K. and Hacıhafızoglu, O. 2007. Modeling of Intermittent Drying of Thin Layer Rough Rice. J. Food Eng., 79: 293–298.
8. Crank, J. 1975. The Mathematics of Diffusion. 2nd Edition, Oxford University Press, London, PP.414.
9. Demir, V., Gunhan, T., Yagcioglu, A. K. and Degirmencioglu, A. 2004. Mathematical Modeling and the Determination of Some Quality Parameters of Air-dried Bay Leaves. Biosys. Eng., 88: 325-335.
10. Demir, V., Gunhan, T. and Yagcioglu, A. K. 2007. Mathematical Modeling of Convection Drying of Green Table Olives. Biosys. Eng., 98: 47-53.
11. Demirel, M. and Turhan, M. 2003. Air Drying Behavior of Dwarf Cavendish and Gross Michel Banana Slices. J. Food Eng., 59: 1-11.
12. Doymaz, I. 2004. Effect of Pre-treatments Using Potassium Metabisulphite and Alkaline Ethyl Oleate on the Drying Kinetics of Apricots. Biosys. Eng., 89: 281-287.
13. Doymaz, I. and Pala, M. 2002. The Effects of Dipping Pretreatments on Air-drying Rates of the Seedless Grapes. J. Food Eng., 52: 413-417.
14. Erenturk, S. and Erenturk, K. 2007. Comparison of Genetic Algorithm and Neural network Approaches for the Drying Process of Carrot. J. Food Eng., 78: 905–912.
15. FAOSTAT. 2008. World Maize (Corn) Production. Available in: http://www.geohive.com/ charts/ag_maize.aspx.
16. Gorjian, S. 2011. Drying Kinetics and Quality of Barberry in a Thin Layer Dryer. J. Agr. Sci. Tech., 13(3): 303-314.
17. Gornicki, K. and Kaleta, A. 2007. Drying Curve Modeling of Blanched Potato Cubes under Natural Convection Condition. J. Food Eng., 82: 160–70.
18. Goyal, R. K., Kingsly, A. R. P., Manikantan, M. R. and Ilyas, S. M. 2007. Mathematical Modeling of Thin Layer Drying Kinetics of Plum in a Tunnel Dryer. J. Food Eng., 79: 176–180.
19. Hashemi, G., Mowla, D. and Kazemeini, M. 2009. Moisture Diffusivity and Shrinkage of Broad Beans during Bulk Drying in an Inert Medium Fluidized Bed Dryer Assisted by Dielectric Heating. J. Food Eng., 92: 331–338.
20. Hassini, L., Azzouz, S., Peczalski, R. and Belghith, A. 2007. Estimation of Potato Moisture Diffusivity from Convective Drying Kinetics with Correction for Shrinkage. J. Food Eng., 79: 47–56.
21. Kaleta, A. and Górnicki, K. 2010. Some Remarks on Evaluation of Drying Models of Red Beet Particles. Energy Conv. Manag., 51: 2967–2978.
22. Karbassi, A. and Mehdizadeh, Z. 2008. Drying Rough Rice in a Fluidized Bed Dryer. J. Agr. Sci. Tech., 10(3): 233-241.
23. Khoshtaghaza, M. H., Sadeghi, M. and Amiri Chayjan, R. 2007. Study of Rough Rice Drying Process in Fixed and Fluidized Bed Conditions. J. Agric. Sci. Natural Res. 14(2): 127-137.
24. Kingsly, A. R. P., Goyal, R. K., Manikantan, M.R. and Ilyas, S.M. 2007. Effects of Pretreatments and Drying air Temperature on Drying Behavior of Peach Slice. Int. J. Food Sci. Technol., 42: 65-69.
25. Koyuncu, T., Pinar, Y. and Lule, F. 2007. Convective Drying Characteristics of Azarole red (Crataegus monogyna Jacq.) and Yellow (Crataegus aronia Bosc.) Fruits. J. Food Eng., 78: 1471–1475.
26. Krokida, M. K., Karathanos, V. T., Maroulis, Z. B. and Marinos-Kouris, D. 2003. Drying Kinetics of Some Vegetables. J. Food Eng., 59: 391–403.
27. Kunii, D. and Levenspiel, O. 1991. Fluidization Engineering. Butterworth-Heinemann, Stonehame, PP.491.
28. Leeratanarak, N., Devahastin, S. and Chiewchan, N. 2006. Drying Kinetics and Quality of Potato Chips undergoing Different Drying Techniques. J. Food Eng., 77: 635–643.
29. Meziane, E. 2011. Drying Kinetics of Olive Pomace in a Fluidized Bed Dryer. Energy Conv. Manage., 52: 1644–1649.
30. Midilli, A., Kucuk, H. and Yapar, Z. 2002. A New Model for Single-layer Drying. Drying Technol., 20(7): 1503-1513.
31. Pathare, P. B. and Sharma, G. P. 2006. Effective Moisture Diffusivity of Onion Slices undergoing Infrared Convective Drying. Biosys. Eng., 93: 285–291.
32. Rafiee, S. 2009. Thin Layer Drying Properties of Soybean (Viliamz Cultivar). J. Agr. Sci. Tech., 11(3): 301-308.
33. Sharaf-Elden, Y. I., Blaisdell, J. L. and Hamdy, M. Y. 1980. A Model for Ear Corn Drying. Trans. ASAE, 23: 1261-1265
34. Tahmasebi, M., Tavakoli Hashjin, T., Khoshtaghaza, M. H. and Nikbakht, A. M. 2011. Evaluation of Thin-layer Drying Models for Simulation of Drying Kinetics of Quercus (Quercus persica and Quercus libani). J. Agr. Sci. Tech., 13: 155-163.
35. Tarigan, E., Prateepchaikul, G., Yamseangsung, R., Sirichote, A. and Tekasakul, P., 2006. Drying Characteristics of Unshelled Kernels of Candle Nuts. J. Food Eng., 79: 828–833.
36. Wang, C. Y. and Singh, R. P. 1978. Use of Variable Equilibrium Moisture Content in Modeling Rice Drying: ASAE Paper No. 78-6505. ASAE Press. St. Joseph, MI, USA, PP. 12.
37. Wang, R., Zhang, M. and Mujumdar, A. S. 2010. Effects of Vacuum and Microwave Freeze Drying on Microstructure and Quality of Potato Slices. J. Food Eng., 101: 131–139.
38. Zhang, Q. and Litchfield, J. B. 1991. An Optimization of Intermittent Corn Drying in a Laboratory Scale Thin Layer Dryer. Drying Technol., 9: 383-395.
39. Zhang, Q., Yang, S. X., Mittal, G. S. and Yi, S. 2002. Prediction of Performance Indices and Optimal Parameters of Rough Rice Drying Using Neural Network. Biosys. Eng., 83(3): 281-290.