Cadmium-induced Stress and Antioxidative Responses in Different Brassica napus Cultivars

Authors
Department of Agricultural Biotechnology, Imam Khomeini International University, Qazvin, Islamic Republic of Iran.
Abstract
To estimate plant resistance to Cadmium Chloride (CdCl2) stress for phytoremediation purposes, the effect of cadmium (Cd) phytotoxicity was assessed on total soluble protein, chlorophyll (Chl) content and antioxidant enzymes in the leaves of three different Brassica napus (B. napus) cultivars; Mohican, Reg.Cob and Okapi. Plants were exposed to three levels of CdCl2 (0.75, 1.5 and 2.25 mM) in irrigation water. A reduction in protein and Chl content was noted for all treatments in the three cultivars. Generally, superoxide dismutase (SOD) and ascorbate peroxidase (APX) activities were increased with 0.75 mM CdCl2 and then decreased at higher concentrations. SOD activity was enhanced up to 1.5 mM CdCl2 concentration in Mohican cultivar. Moreover, APX activity of Okapi cultivar was increased at a much higher rate of CdCl2 levels compared to Mohican and Reg.Cob cultivars. Different concentrations of CdCl2 induced a reduction in the catalase (CAT) activity of Mohican and Reg.Cob. However, this activity was increased with 0.75 mM CdCl2 in Okapi and then decreased with higher concentrations. These results indicate that B. napus cultivars have different tolerances to CdCl2 stress and in consequence, different phytoremediation efficiencies. Moreover, because Okapi possesses a higher antioxidant enzyme activity than the other two cultivars, it is suggested that it is probably the most tolerant cultivar to CdCl2 stress.

Keywords


1. Aebi, H. E. 1987. Catalase In Vitro. Methods Enzymol., 105: 121-126.
2. Ahmad, P., Nabi, G. and Ashraf, M. 2011. Cadmium-induced Oxidative Damage in Mustard [Brassica juncea (L.) Czern. and Coss.] Plants Can Be Alleviated by Salicylic Acid. S. Afr. J. Bot., 77(1): 36-44.
3. Allen, R. P., Webb, R. P. and Schake, S. A. 1997. Use of Transgenic Plants to Study Antioxidant Defenses. Free Radic. Biol. Med., 23: 472–479.
4. Alvarez, M. E. and Lamb, C. 1997. Oxidative Burst Mediated Defense Responses in Plant Disease Resistance. In: "Oxidative Stress and the Molecular Biology of Antioxidant Defenses", (Ed.): Scandalios, J. G.. Cold Spring Harbor Laboratory Press, New York, PP. 815-839.
5. Amani, A. F. 2008. Cadmium Induced Changes in Pigment Content, Ion Uptake, Proline Content and Phosphoenolpyruvate Carboxylase Activity in Triticum aestivum Seedlings. Aust. J. Basic. Appl. Sci., 2(1): 57-62.
6. Arnon, D. I. 1949. Copper Enzymes in Isolated Chloroplast: Polyphenoloxidase in Beta vulgaris. Plant Physiol., 24: 1-15.
7. Arrora, A., Sairam, R. K. and Srivastava, G. C. 2002. Oxidative Stress and Antioxidant System in Plants. J. Plant Physiol., 82: 1227–1237.
8. Ayoughi, F., Marzegar, M., Sahari, M. A. and Naghdibadi, H. 2011. Chemical Compositions of Essential Oils of Artemisia dracunculus L. and Endemic Matricaria chamomilla L. and an Evaluation of Their Antioxidative Effects. J. Agric. Sci. Tech., 13(1): 79-88.
9. Baryla, A., Carrier, P., Franck, F., Coulomb, C., Sahut, C. and Havaux, M. 2001. Leaf Chlorosis in Oilseed Rape Plants (Brassica napus) Grown on Cadmium-polluted Soil: Causes and Consequences for Photosynthesis and Growth. Springer Berlin, Planta, 212: 696-709.
10. Beauchamp, C. and Fridovich, F. 1971. Superoxide Dismutase: Cd Assay and an Assay Applicable to Acrylamide Gels. Anal. Biochem., 44: 276-27.
11. Bradford, M. 1976. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-dye Binding. Anal. Biochem., 72: 248-254.
12. Brooks, R. R., Lee, J., Reeves, R. and Jaffre, T. 1977. Detection of Nickeliferous Rocks by Analysis of Herbarium Specimens of Indicator Plants. J. Geochem. Explor., 7: 49–58.
13. Bybordi, A. 2010. Effects of Salinity on Yield and Component Characters in Canola (Brassica napus L.) Cultivars. Notulae Scientia Biologicae, 2(1): 81-83.
14. Chaoui, A., Mazhouri, S., Ghorbal, M. H. and Ferjani, E. 1997. Cadmium Affects on Lipid Peroxidation and Antioxidant Enzyme Activities in Bean (Phaseolus vulgaris L.). Plant Sci., 127: 139-147.
15. Chen, F., Wang, F., Wu, F., Mao, W., Zhang, G. and Zhou, M. 2010. Modulation of Exogenous Glutathione in Antioxidant Defense System against Cd Stress in the Two Barley Genotypes Differing in Cd Tolerance. Plant Physiol. Biochem., 48(8): 663-672.
16. Farhoosh, R., Purazrang, H., Khodaparast, M. H. H., Rahimizadeh, M. and Seyedi S. M. 2004. Extraction and Separation of Antioxidative Compounds from Salvia leriifolia Leaves. J. Agric. Sci. Technol., 6: 57-62.
17. Gallego, S. M., Benavides, M. P. and Tomaro, M. L. 1996. Effect of Heavy Metal Ion Excess on Sunflower Leaves: Evidence for Involvement of Oxidative Stress. Plant Sci., 121: 151-159.
18. Gao, Y., Guo, Y. K., Lin, S. H., Fang, Y. Y. and Bai, J. G. 2010. Hydrogen Peroxide Pretreatment Alters the Activity of Antioxidant Enzymes and Protects Chloroplast Ultrastructure in Heat-stressed Cucumber Leaves. Sci. Hortic., 126: 20-26.
19. Gonçalves, J. F., Becker, A. G., Cargnelutti, D., Tabaldi, A. L., Pereira, L. B., Battisti, V. I, Spanevello, R. M., Morsch, V. M., Nicoloso, F. T. and Schetinger, M. R. C. 2007. Cadmium Toxicity Causes Oxidative Stress and Induces Response of the Antioxidant System in Cucumber Seedlings. Braz. J. Plant Physiol., 19(3): 24-26.
20. Guillermo, O. N., Karina, B. B., Alcira, B. and Maria, L. T. 2007. Cadmium Induced Oxidative Stress in Soybean Plants also by the Accumulation of δ-aminolevulinic Acid. Bio Metals., 20: 841-851.
21. Hayat, S., Ali, B., Aiman, H. S. and Ahmad, A. 2007. Brassinosteroid Enhanced the Level of Antioxidants under Cadmium Stress in Brassica juncea. Environ. Exp. Bot., 60: 33-41.
22. Huang, D. F., Xi, L. L., Yang, L. N., Wang Z. Q. and Yang J. C. 2008. Comparison of Agronomic and Physiological Traits of Rice Genotypes Differing in Cadmium-tolerance. Acta Agron. Sci., 34(5): 809-817.
23. Jia, Z., Zou, B., Wang, X., Qiu, J., Ma, H., Gou, Z., Song, S. and Dong, H. 2010. Quercetin-induced H2O2 Mediates the Pathogen Resistance against Pseudomonas syringae pv. Tomato DC3000 in Arabidopsis thaliana. Biochem. Biophys. Res. Commun., 396: 522-527.
24. Liu, Y., Jiang, H., Zhao, Z. and An, L. 2011. Abscisic Acid is Involved in Brassinosteroids-induced Chilling Tolerance in the Suspension Cultured Cells from Chorispora bungeana. J. Plant Physiol., 168(9): 853-862.
25. Luna, C. M., Gonzalez, C. A. and Trippi, V. S. 1994. Oxidative Damage Caused by an Excess of Cu in Oat Leaves. Plant Cell Physiol., 35: 11–15.
26. Matthew, J. M. and Leon, V. K. 2008. Investigating Heavy-metal Hyperaccumulation Using Thlaspi caerulescens as a Model System. Ann. Bot., 102: 3-13.
27. Mazhoudi, S., Chaoui, A., Ghorbal, M. H. and Ferjani, E. E. 1997. Response of Antioxidant Enzymes to Excess Copper in Tomato (Lycopersicon esculentum, Mill). Plant Sci., 127: 129-137.
28. Mishra, S., Srivastava, S., Tripathi, R. D., Govindarajan R., Kuriakose, S. V. and Prasad M. N. V. 2006. Phytochelatin Synthesis and Response of Antioxidants during Cadmium Stress in Bacopa monnieri L. Plant Physiol. Biochem., 44: 25-37.
29. Mobin, M. and Khan, N. A. 2007. Photosynthetic Activity, Pigment Composition and Antioxidative Response of Two Mustard (Brassica juncea) Cultivars Differing in Photosynthetic Capacity Subjected to Cadmium Stress. J. Plant Physiol., 164: 601-610.
30. Morita, S., Kaminaka, H., Masumura, T. and Tanaka, K. 1999. Induction of Rice Cytosolic Ascorbate Peroxidase mRNA by Oxidative Stress Signaling. Plant Cell Physiol., 40: 417–422.
31. Nakano, Y. and Asada, K. 1981. Hydrogen Peroxide is Scavenged by Ascorbate-specific Peroxidase in Spinach Chloroplasts. Plant Cell Physiol., 22: 867-880.
32. Noctor, G. and Foyer, C. H. 1998. Ascorbate and Glutathione: Keeping Active Oxygen under Control. Annu. Rev. Plant Physiol., 49: 249-279.
33. Novakova, M., Matejova, E. and Sofrova, D. 2004. Cd2+ Effect on Photosynthetic Apparatus in Synechococcus elongates and Spinach (Spinacia oleraceae L.). Biomed. Life Sci., 42: 425-430.
34. Otero, S., Núñez-Olivera, E., Martínez-Abaigar, J., Tomás, R., Arróniz-Crespo, M. and Beaucourt, N. 2006. Effects of Cadmium and Enhanced UV Radiation on the Physiology and the Concentration of UV-absorbing Compounds of the Aquatic Liverwort Jungermannia exsertifolia subsp. Cordifolia Photochem. Photobiol. Sci., 5: 760-769.
35. Piqueras, A., Olmos, E., Martinez-Solano, J. R. and Hellin, E. 1999. Cd Induced Oxidative Burst in Tobacco BY-2 cell: Time- course, Subcellular Location and Antioxidant Response. Free Radic. Res., 31: S33-S38.
36. Poschenrieder C., Tolrà, R. and Barceló J. 2006. Can Metals Defend Plants against Biotic Stress? Review Article. Trends Plant Sci., 11(6): 288-295.
37. Prasad, K. V. S. K., Saradhi, P. P. and Sharmila, P. 1999. Concerned Action of Antioxidant Enzymes and Curtailed Growth under Zn Toxicity in Brassica juncea. Environ. Exp. Bot., 42: 1–10.
38. Prochazkova, D., Sairam, R. K., Srivastava, G. C. and Singh, D. V. 2001. Oxidative Stress and Antioxidant Activity as the Basis of Senescence in Maize Leaves. Plant Sci., 161: 765-771.
39. Qadir, S., Qureshi, M. I., Javed, S. and Abdin, M. Z. 2004. Genotypic Variation in Phytoremediation Potential of Brassica junceae Cultivars Exposed to Cd Stress. Plant Sci., 167: 1171-1181.
40. Rajaei, A., Barzegar, M. and Sahari, M. A. 2008. Comparison of Antioxidative Effect of Tea and Sesame Seed Oils Extracted by Different Methods. J. Agric. Sci. Technol, 10: 345-350.
41. Romero-Puertas M. C., Palma, J.M., Gómez, M., Del Río, L. A. and Sandalio L. M. 2002. Cadmium Causes the Oxidative Modification of Proteins in Pea Plants. Plant, Cell Environ., 25(5): 677-686.
42. Sadeghi, N., Jannat, B., Oveisi, M. R., Hajimahmoodi, M. and Photovat, M. 2009. Antioxidant activity of Iranian Pomegranate (Punica granatum L.) Seed Extracts. J. Agr. Sci. Tech, 11: 633-638.
43. Shaw, B. P. 1995. Effect of Mercury and Cd on the Activities of Antioxidative Enzymes in the Seedling of Phaseolus aureus. Biol. Plants., 37: 587-596.
44. Singh, P. K. and Tewari, R. K. 2003. Cadmium Toxicity Induced Changes in Plant Water Relations and Oxidative Metabolism of Brassica junceae Plants. Environ. Biol., 24: 107-112.
45. Slooten, L., Capiiau, K., Van Camp, W., Van Montagu, M., Sybesma, C. and Inze, D. 1995. Factors Affecting the Enhancement of Oxidative Stress Tolerance in Transgenic Tobacco Overexpressing Mn-SOD in the Chloroplast. Plant Physiol., 107: 737–750.
46. Smith, S. R. 2009. A Critical Review of the Bioavailability and Impacts of Heavy Metals in Municipal Solid Waste Composts Compared to Sewage Sludge: Review Article. Environ. Int., 35: 142-156.
47. Sudhakar A., Lakshmi S. and Giridarakumar, A. 2001. Changes in the Antioxidant Enzyme Efficacy in Two High Yielding Genotypes of Mulberry (Morus alba L.) under NaCl Salinity. Plant Sci., 161: 613–619.
48. Ünyayar, S., Çelik, A., Özlem Çekiç, A. and Gözel, A. 2006. Cadmium-induced Genotoxicity, Cytotoxicity and Lipid Peroxidation in Allium sativum and Vicia faba. Mutagenesis, 21(1): 77-81.
49. Walley, J. 2005. The Effects of Low-level Cadmium Toxicity on Field and Greenhouse Grown Soybean (Glycine max). MSc. Thesis, Department of Botany, Miami University, Oxford, Ohio,
50. Weckx, J. E. J. and Clijsters, H. M. M. 1996. Oxidative Damage and Defense Mechanisms in Primary Leaves Phaseolus vulgaris as a Result of Root Assimilation of Toxic Amounts of Copper. Physiol. Plant, 96: 506–512.
51. Zawoznik, M. S., Groppa, M. D., Tomaro, M. L. and Benavides, M. P. 2007. Endogenous Salicylic Acid Potentiates Cadmium-induced Oxidative Stress in Arabidopsis thaliana. Plant Sci., 173: 190-197.
52. Zengin, F. and Munzuroglu, O. 2005. Effects of Some Heavy Metals on Content of Chlorophyll, Proline and Some Antioxidant Chemicals in Bean (Phaseolus vulgaris L.) seedlings. Acta Biol. Cracov. Ser. Bot., 47(2): 157–164.
53. Zhao, X., Nishimura, Y., Fukumoto, Y. and Li, J. 2011. Effect of High Temperature on Active Oxygen Species, Senescence and Photosynthetic Properties in Cucumber Leaves. Environ. Exp. Bot., 70: 212-216.