Effects of Drought Stress on the Lipid Peroxidation and Antioxidant Enzyme Activities in Two Canola (Brassica napus L.) Cultivars

Authors
Department of Plant Breeding and Biotechnology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Islamic Republic of Iran.
Abstract
Drought is one of the most important abiotic stresses affecting plant growth and development. In the present study, the changes in lipid peroxidation rate and antioxidant enzyme activities were determined at different concentrations of PolyEthylene Glycol (PEG) 6000 (0, 5, 10, and 15% (w/v)) for two canola cultivars (SLM046 and Hyola 308). In order to produce water deficit, 12 days old canola seedlings were treated with PEG 6,000 in half strength Hoagland solution for 24 hours. PEG treatments increased the content of Malondialdehyde (MDA), a product of lipid peroxidation, in roots and shoots of both cultivars; but for Hyola 308 cultivar, the rate of increase of MDA was higher than SLM046 cultivar. In addition, drought did not have any significant effect on MDA content in roots of SLM046 cultivar. On the other hand, water stress increased Superoxide dismutase (SOD), Peroxidase (POD), Catalase (CAT) and Ascorbate peroxidase (APX) antioxidant enzyme activities of both shoots and roots of the studied cultivars; but activity of these antioxidants in SLM046 cultivar was obviously higher than in Hyola 308 cultivar. These results showed a higher water stress tolerance for SLM046 cultivar.

Keywords


1. Abdullah, A. and Ghamdi, A. L. A. 2009. Evaluation of Oxidative Stress in Two Wheat (Triticum aestivum) Cultivars in Response to Drought. Int. J. Agric. Biol., 11: 7-12.
2. Abdul Jaleel, C., Sankar, B., Murali, P. V., Gomathinayagam, M., Lakshmanan, G. M. A., and Panneerselvam, R. 2008. Water Deficit Stress Effects on Reactive Oxygen Metabolism in Catharanthus roseus; Impacts on Ajmalicine Accumulation. Colloids Surf., 62: 105-111.
3. Abedi, T. and Pakniyat, H. 2010. Antioxidant Enzyme Changes in Response to Drought Stress in Ten Cultivars of Oilseed Rape (Brassica napus L.). Czech J. Genet. Plant Breed., 46(1): 27-34.
4. Akcay, U.C., Ercan, O., Kavas, M., Yildiz, L., Oktem, H.A. and Yucel, M. 2010. Drought-induced Oxidative Damage and Antioxidant Responses in Peanut (Arachis hypogaea L.) Seedlings. Plant Growth Regul., 61(1): 21-28.
5. Ashraf, M. and Foolad, M. R. 2007. Roles of Glycine Betaine and Proline in Improving Plant Abiotic Stress Resistance. Environ. Exp. Bot., 59: 206–216.
6. Azooz, M. M., Ismail, A. M. and A. Elhamd, M. F. 2009. Growth, Lipid Peroxidation and Antioxidant Enzyme Activities as a Selection Criterion for Salt Tolerance of Maize Cultivars Grown under Salinity Stress. Int. J. Agric. Biol., 11: 21-26.
7. Bai, L. P., Sui, F. G., Ge, T. D., Sun, Z. H., Lu, Y. Y., and Zhou, G. S. 2006. Effect of Soil Drought Stress on Leaf Water Status, Membrane Permeability and Enzymatic Antioxidant System of Maize. Pedosphere, 16: 326-332.
8. Benavente, M. L., Kernodle, S. P., Margis-Pinhero, M., and Scandalios, J. G. 2004. Salt-induced Antioxidant Metabolism Defenses in Maize (Zea mays L.) Seedling. Redox Rep., 9(1): 29-36.
9. Bhardwaj, J. and Yadav, S. K. 2012. Comparative Study on Biochemical Parameters and Antioxidant Enzymes in Drought Tolerant and Sensitive Variety of Horsegram (Macrotyloma uniflorum) under Drought Stress. Am. J. Plant Physiol., 7: 17-29.
10. Bian, S. and Jiang, Y. 2009. Reactive Oxygen Species, Antioxidant Enzyme Activities and Gene Expression Patterns in Leaves and Roots of Kentucky Bluegrass in Response to Drought Stress and Recovery. Sci. Hort., 120: 264-270.
11. Bradford, M. M. (1976). A Rapid and Sensitive Method for the Quantification of Microgram Quantities of Protein Utilizing the Principle of Protein-dye Binding. Anal. Biochem., 72: 248-254.
12. Cakmak, I. and Horst, W. 1991. Effect of Aluminum on Lipid Peroxidation, Superoxide Dismutase, Catalase and Peroxidase Activities in Root Tip of Soybean (Glysin max). Plant Physiol., 83: 463-468.
13. Caruso, A., Chefdor, F., Carpin, S., Depierreux, C., M. Delmotte, F., Kahlem, G., and Morabito, D. 2008. Physiological characterization and identification of genes differentially expressed in response to drought induced by PEG 6000 in Populus canadensis leaves. J. Plant Physiol., 165: 932-941.
14. Cunhua, S., Wei, D., Xiangling, C., Xinna, X., Yahong, Z., Dong , S. and Jianjie, S. 2010. The Effects of Drought Stress on the Activity of Acid Phosphatase and Its Protective Enzymes in Pigweed Leaves. Afr. J. Biotechnol., 9: 825-833.
15. De Vos, C. H., Schat, M., De Waal, R., Vooij, S. and Ernst W. 1991. Increased to Copper-induced Damage of the Root Plasma Membrane in Copper Tolerant Silene cucubalus. Plant Physiol., 82: 523-528.
16. Esfandiari, E., Shekari, F., Shekari, F. and Esfandiari, M. 2007. The Effect of Salt Stress on Antioxidant Enzymes Activity and Lipid Peroxidation on the Wheat Seedling. Not. Bot. Hort. Agrobot. Cluj., 35: 48-56.
17. Food and Agriculture Organization (F.A.O). 2011. Crop Production Statistics. http:// www.Fao.org.
18. Fazeli, F., Ghorbanali, M. and Niknam, V. 2007. Effect of Drought on Biomass, Protein Content, Lipid Peroxidation and Antioxidant Enzymes in Two Sesame Cultivars. Biol. Plantarum., 51: 98-103.
19. Ghanati, F., Morita, A. and Yokota, H. 2002. Induction of Suberin and Increase of Lignin Content by Excess Boron in Tabacco Cell. Soil Sci. Plant Nutr., 48(3): 357-364.
20. Giannopolitis, C. and Ries, S. K. 1977. Superoxide Dismutases: I. Occurrence in Higher Plant. Plant Physiol., 59: 309-314.
21. Gill, S. S. and Tuteja, N. 2010. Reactive Oxygen Species and Antioxidant Machinery in Abiotic Stress Tolerance in Crop Plants. . Plant Physiol. Biochem., 48: 909-930.
22. Hasheminasab, H., Assad, M. T., Aliakbari, A. and Sahhafi, R. 2012. Influence of Drought Stress on Oxidative Damage and Antioxidant Defense Systems in Tolerant and Susceptible Wheat Genotypes. J. Agr. Sci., 4(8): 20-30.
23. Kahrizi, S., Sedighi, M. and Sofalian, O. 2012. Effect of Salt Stress on Proline and Activity of Antioxidant Enzymes in Ten Durum Wheat Cultivars. Ann. Biol. Res., 3(8): 3870-3874.
24. Luo, Y., Tang, H. and Zhang, Y. 2011. Production of Reactive Oxygen Species and Antioxidant Metabolism about Strawberry Leaves to Low Temperature. J. Agr. Sci., 3(2): 89-96.
25. Jung, S. 2004. Variation in Antioxidant Metabolism of Young and Mature Leaves of Arabidopsis thaliana Subjected to Drought. Plant Sci., 166: 459-466.
26. Manivannan, P., Abdul Jaleel, C., Somasundaram, R. and Panneerselvam, R. 2008. Osmoregulation and Antioxidant Metabolism in Drought-stressed Helianthus annuus under Triadimefon Drenching. C. R. Biol., 331: 418–425.
27. Mohammadi, A., Habibi, D, Rihami, M. and Mafakheri, S. 2011. Effect of Drought Stress on Antioxidant Enzymes Activity of Some Chickpea Cultivars. Am-Euras. J. Agric. Environ. Sci., 11(6): 782-785.
28. Molazem, D. and Azimi, J. 2011. Proline Reaction, Peroxide Activity and Antioxiant Enzymes in Varieties of Maize (Zea mays L.) under Different Levels of Salinity. Aust. J. Basic Appl. Sci., 5(10): 1248-1253.
29. Moradshahi, A., Eskandari, B. S. and Kholdebarin, B. 2004. Some Physiological Responses of Canola (Brassica napus L.) to Water Deficit Stress under Laboratory Conditions. Iran. J. Sci. Technol., 28: 43-50.
30. Moussa, H. and Abdel-Aziz, S. M. 2008. Comparative Response of Drought Tolerant and Drought Sensitive Maize Genotypes to Water Stress. Aust. J. Crop Sci., 1: 31-36.
31. Nair, A. S., Abraham, T. K and Jaya, D. S. 2008. Studies on the Changes in Lipid Peroxidation and Antioxidants in Drought Stress Induced Cowpea (Vigna unguiculata L.) Varieties. J. Environ. Biol., 29: 689-691.
32. Nakano, Y. and Asada, K. 1981. Hydrogen Peroxide is Scavenged by Ascorbate Specific Peroxidase in Spinach Chloroplasts. Plant Cell Physiol., 22: 867–880.
33. Omidi, H. 2010. Changes of Proline Content and Activity of Antioxidative Enzymes in Two Canola Genotype under Drought Stress. Am. J. Plant Physiol., 5(6): 338-349.
34. Ozkur, O., Ozdemir, F., Bor, M. and Turkan, I. 2009. Physiochemical and Antioxidant Responses of the Perennial Xerophyte Capparis ovata Desf. to Drought. Environ. Exper. Bot., 66: 487–492.
35. Qin, J., Wang, X., Hu, F. and Li, H. 2010. Growth and Physiological Performance Responses to Drought Stress under Non-flooded Rice Cultivation with Straw Mulching. Plant Soil Environ., 56 (2): 51-59.
36. Radyuk, M. S., Domanskaya, I. N., Shcherbakov, R. A. and Shalygo, N. V. 2010. Effect of Low Above-zero Temperature on the Content of Low-molecular Antioxidants and Activities of Antioxidant Enzymes in Green Barley Leaves. Russ. J. Plant Physiol., 56 (2): 175-180.
37. Sanchez-Rodriguez, E., Rubio-Wilhelmi, M., Cervilla, L. M., Blasco, B., Rios, J. J., Rosales, M. A., Romero, L. and Ruiz, J. M. 2010. Genotypic Differences in Some Physiological Parameters Symptomatic for Oxidative Stress under Moderate Drought in Tomato Plants. Plant Sci., 178: 30-40.
38. Sedghi, M., Sharifi, R. S., Pirzad, A. R. and Balaneji, B. A. 2012. Phytohormonal Regulation of Antioxidant Systems in Petals of Drought Stressed Pot Marigold (Calendula officinalis L.). J. Agr. Sci. Tech., 14: 869-878.
39. Shao, H. B., Liang, Z. S. and Shao, M. A. 2006. Osmotic Regulation of 10 Wheat (Triticum aestivum L.) Genotypes at Soil Water Deficits. Colloids Surf., 47: 32-139.
40. Shao, H. B., Chu, L. Y., Wu, G., Zhang, J. H., Lu, Z. H. and Hu, Y. C. 2007. Changes of Some Anti-oxidative Physiological Indices under Soil Water Deficits among 10 Wheat (Triticum aestivum L.) Genotypes at Tillering Stage. Colloids Surf., 54: 143-149.
41. Sharma, P. and Dubey, R. S. 2005. Drought Induces Oxidative Stress and Enhances the Activities of Antioxidant Enzymes in Growing Rice Seedlings. Plant Growth Regul., 46: 209-221.
42. Sofo, A., Manfreda, S., Dichio, B. and Xiloyannis, C. 2008. The Olive Tree: A Paradigm for Drought Tolerance Mediterranean Climates. Hydrol. Earth Syst. Sci., 12: 293-301.
43. Terzi, R. and Kadioglu, A. 2006. Drought Stress Tolerance and the Antioxidant Enzyme System in Ctenanthe setosa. Acta Biol. Cracov. Ser. Bot., 48: 89-96.
44. Tohidi-Moghadam, H. R., Shirani-Rad, A. H., Nour-Mohammadi, G., Habibi, D. and Mashhadi-Akbar-Boojar, M. (2009). Effect of Super Absorbent Application on Antioxidant Enzyme Activities in Canola (Brassica napus L.) Cultivars under Water Stress Conditions. Am. J. Agric. Biol. Sci., 4 (3): 215-223.
45. Turkan, I., Bor, M., Ozdemir, F. and Koca, H. 2005. Differential Responses of Lipid Peroxidation and Antioxidants in the Leaves of Drought-tolerant P. acutifolius Gray and Drought-sensitive P. vulgaris L. Subjected to Polyethylene Glycol Mediated Water Stress. Plant Sci., 168: 223-231.
46. Van den Berg, L. and Zeng, Y. J. 2006. Response of South African Indigenous Grass Species to Drought Stress Induced by Polyethylene Glycol (PEG) 6000. S. Af. J. Bot., 72: 284-286.
47. Wang, W. B., Kim, Y. H., Lee, H. S., Kim, K. Y., Deng, X. P. and Kwak, S. S. 2009. Analysis of Antioxidant Enzyme Activity during Germination of Alfalfa under Salt and Drought Stress. Plant Physiol. Biochem., 47: 570-577.
48. Xu, J., Zhang, Y., Guan, Z., Wei, W., Han, L. and Chai, T. 2008. Expression and Function of Two Dehydrins under Environmental Stresses in Brassica juncea L. Mol. Breed., 21: 431-438.
49. Youssefi, A., Nshanian, A. and Aziz, M. 2011. Evaluation of Influences of Drought Stress in Terminal Growth duration on Yield and Yield Components of Different Spring Brassica Oilseed Species. Am-Euras. J. Agric. Environ. Sci., 11(3): 406-410.