Abscisic Acid Improves Chilling-Induced Oxidative Stress in Trichosanthes kirilowii Maxim Seedlings

Authors
Laboratory of Botany, Zhejiang Normal University, People's Republic of China.
Abstract
Trichosanthes kirilowii, an important economic plant in China, is sensitive to chilling. To investigate the effect of abscisic acid (ABA) treatment on the chilling tolerance of Trichosanthes kirilowii Maxim, different concentrations of ABA were sprayed on Trichosanthes kirilowii leaves and the resulting catalase (CAT) and superoxide dismutase (SOD) activities and the malondialdehyde (MDA) content in the leaves were determined. The results indicated that at 4 ºC, the CAT and SOD activities increased at first and then decreased with increasing ABA concentration. By contrast, the MDA content decreased at first and then increased. They both had an extreme value when sprayed with 5.0 or 7.5 mg L-1 ABA. A real-time polymerase chain reaction was performed to investigate the influence of exogenous ABA on the CAT gene expression of Trichosanthes kirilowii leaves. The results indicated that at 4 ºC, the CAT relative gene expression showed a high degree of positive correlation with the enzyme activities of CAT and SOD, and a negative correlation with MDA content. These results led to three conclusions. First, exogenous ABA exhibits significant effect on the chilling tolerance of Trichosanthes kirilowii. Second, exogenous ABA significantly increases the enzyme activities of CAT and SOD under cold environments. Finally, under cold environments and the effect of ABA, the relative gene expression of catalase 2 (CAT2) gene was found to play an important role in the enhancement of the chilling tolerance of Trichosanthes kirilowii leaves.

Keywords


1. Beyer, W. F. and Fridovich, I. 1987. Assaying for Superoxide Dismutase Activity: Some Large Consequences of Minor Changes in Conditions. Anal. Biochem., 161(2): 559-566.
2. Bueno, P., Piqueras, A., Kurepa, J., Savoure, A., Verbruggen, N., Montagu, M. Van and Inze, D. 1998. Expression of Antioxidant Enzymes in Response to Abscisic Acid and High Osmoticum in Tobacco BY-2 cell Cultures. Plant Sci., 138(1): 27-34.
3. Campos, P. S., Quartin, V., Ramalho, J. C. and Nunes, M. A. 2003. Electrolyte Leakage and Lipid Degradation Account for Cold Sensitivity in Leaves of Coffea sp. Plants. J. Plant Physiol., 160: 283-292.
4. Esfandiari, E., Shekari, F., Shekari, F. and Esfandiari M. 2007. The Effect of Salt Stress on Antioxidant Enzymes’ Activity and Lipid Peroxidation on the Wheat Seedling. Not. Bot. Hort. Agrobot. Cluj, 35(1): 48-56.
5. Frugoli, J. A., Zhong, H. H., Nuccio, M. L., McCourt, P., McPeek, M. A., Thomas, T. L. and McClung, C. R. 1996. Catalase is Encoded by a Multigene Family in Arabidopsis thaliana (L.). Plant Physiol., 112(1): 327-336.
6. Guan, L. M. and Scandalios, J. G. 1993. Characterization of the Catalase Antioxidant Defense Gene Cat1 of Maize, and Its Developmentally Regulated Expression in Transgenic Tobacco. Plant J., 3(4): 527-536.
7. Guan, L. M. and Scandalios, J. G. 2000. Hydrogen Peroxide-mediated Catalase Gene Expression in Response to Wounding. Free Radical Biol. Med., 28(8): 1182-1190.
8. Heidari, B., Pessarakli, M., Dadkhodaie, A. and Daneshnia, N. 2012. Reactive Oxygen Species-mediated Functions in Plants under Environmental Stresses. J. Agric. Sci. Tech., 2(2b): 159.
9. Hu, X. L., Jiang, M. Y., Zhang, A. Y. and Lu, J. 2005. Abscisic Acid-induced Apoplastic H2O2 Accumulation Up-regulates the Activities of Chloroplastic and Cytosolic Antioxidant Enzymes in Maize Leaves. Planta, 223(1): 57-68.
10. Hu, Y. Q., Liu, S., Yuan, H. M., Li, J., Yan, D. W., Zhang, J. F. and Lu, Y. T. 2010. Functional Comparison of Catalase Genes in the Elimination of Photorespiratory H2O2 Using Promoter and 3'-untranslated Region Exchange Experiments in the Arabidopsis CAT2 Photorespiratory Mutant. Plant Cell Environ., 33(10): 1656-1670.
11. Hung, K. T. and Kao, C. H. 2003. Nitric Oxide Counteracts the Senescence of Rice Leaves Induced by Abscisic Acid. J. Plant Physiol., 160(8): 871-879.
12. Hung, K. T. and Kao, C. H. 2004. Hydrogen Peroxide Is Necessary for Abscisic Acid-induced Senescence of Rice Leaves. J. Plant Physiol., 161(12): 1347-1357.
13. Irving, H. R., Gehring, C. A. and Parish, R. W. 1992. Changes in Cytosolic pH and Calcium of Guard Cells Precede Stomatal Movements. Proc. Natl. Acad. Sci. USA, 89: 1790-1794.
14. Iwamoto, M., Higo, H. and Higo, K. 2000. Differential Diurnal Expression of Rice Catalase Genes: the 5′-flanking Region of CatA Is Not Sufficient for Circadian Control. Plant Sci., 151(1): 39-46.
15. Lee, S., Choi, H., Suh, S., Doo, I. S., Oh, K. Y. and Choi, E. J. 1999. Oligogalacturonic Acid and Chitosan Reduce Stomatal Aperture by Inducing the Evolution of Reactive Oxygen Species from Guard Cells of Tomato and Commelina communis. Plant Physiol, 121(1): 147-152.
16. Lee, D. H. and Lee, C. B. 2000. Chilling Stress-induced Changes of Antioxidant Enzymes in the Leaves of Cucumber: In Gel Enzyme Activity Assays. Plant Sci., 159(1): 75-85.
17. Lu, S. Y., Su, W., Li, H. H. and Guo, Z. F. 2009. Abscisic Acid Improves Drought Tolerance of Triploid Bermudagrass and Involves H2O2 and NO-induced Antioxidant Enzyme Activities. Plant Physiol. Biochem., 47(2): 132-138.
18. Luciana M. N., Alana C., Fernando P. M., Dirce F. M., 2010. Chill-induced Changes in Fatty Acid Composition of Tonoplast Vesicles from Hypocotyls of Vigna unguiculata (L.) Walp. Braz. J. Plant Physiol., 22(1): 69-72.
19. Marc D. A., Tottempudi K. P., Barry A. M. and Cecil R. S. 1994. Differential Gene Expression in Chilling-acclimated Maize Seedlings and Evidence for the Involvement of Abscisic Acid in Chilling Tolerance. Plant Physiol., 105: 331-339.
20. Miyake, C. and Asada, K. 1994. Ferredoxin-dependent Photoreduction of the Monodehydroascorbate Radical in Spinach Thylakoids. Plant Cell Physiol., 35(4): 539-549.
21. Mizuno, M., Kamei, M. and Tsuchida, H. 1998. Ascorbate Peroxidase and Catalase Cooperate for Protection against Hydrogen Peroxide Generated in Potato Tubers during Low Temperature Storage. Biochem. Mol. Biol. Int., 44(4): 717-726.
22. Murata, Y., Pei, Z. M., Mori, I. C. and Schroeder, J. I. 2001. Abscisic Acid Activation of Plasma Membrane Ca2+ Channels in Guard Cells Requires Cytosolic NAD(P)H and Is Differentially Disrupted Upstream and Downstream of Reactive Oxygen Species Production in abi1-1 and abi2-1 Protein Phosphatase 2C Mutants. Plant Cell, 13: 2513-2523.
23. Partelli, F. L., Batista-Santos, P., Scotti-Campos, P., Pais, I. P., Quantin, V. L., Vieira, H. D. and Ramalho, J. C. 2011. Characterization of the Main Lipid Components of Chloroplast Membranes and Cold Induced Changes in Coffea spp. Environ. Exp. Bot., 74(1): 194-204.
24. Pei, Z. M., Murata, Y., Benning, G., Thomine. S., Klusener, B. and Allen, G. J. 2000. Calcium Channels Activated by Hydrogen Peroxide Mediate Abscisic Acid Aignalling in Guard Cells. Nature, 406: 731-734.
25. Purev, M., Kim, Y. J., Kim, M. K., Pulla, R. K. and Yang, D. C. 2010. Isolation of a Novel Catalase (Cat1) Gene from Panax ginseng and Analysis of the Response of This Gene to Various Stresses. Plant Physiol. Biochem., 48(6): 451-460.
26. Rikin, A., Atsmon, D. and Gitler, C. 1979. Chilling Injury in Cotton (Gossypium hirsutum L.) Prevention by Abscisic Acid. Plant Cell Physiol., 20(8): 1537-1546.
27. Scandalios, J. G., Acevedo, A. and Ruzsa, S. 2000. Catalase Gene Expression in Response to Chronic High Temperature Stress in Maize. Plant Sci., 156(1): 103-110.
28. Sripinyowanich, S., Klomsakul, P., Boonburapong, B., Boonburapong, B., Bangyeekhun, T., Asami, T., Gu, H., Buaboocha, T. and Chadchawan, S. 2010. Exogenous ABA Induces Salt Tolerance in Indica Rice (Oryza sativa L.): The Role of OsP5CS1 and OsP5CR Gene Expression during Salt Stress. Environ. Exp. Bot.. DOI 10.1016/j. envexpbot. 2010. 01. 009.
29. Wan, X. R. and Li, L. 2006. Regulation of ABA Level and Water-stress Tolerance of Arabidopsis by Ectopic Expression of a Peanut 9-cis-epoxycarotenoid Dioxygenase Gene. Biochem. Biophys. Res. Commun., 347(4): 1030-1038.
30. Wang, C. Y. 1991. Effect of Abscisic Acid on Chilling Injury of Zucchini Squash. J. Plant Growth Regul., 10: 101-105.
31. Wang, C. Y. and Buta, J. G. 1994. Methyl Jasmonate Reduces Chilling Injury in Cucurbita pepo through its Regulation of Abscisic Acid and Polyamine Levels. Environ. Exp. Bot., 34(4): 427-432.
32. Xie, F. X. 2000. Practical Cultivating Technique of Chinese Herbal Medicine. China Agriculture Press, Beijing, PP.57-61.
33. Xing, J. H. and Ding, Z. R. 1981. Analytical Methods of Plant Biochemistry. Science Press, Beijing, PP. 144-145.
34. Zhang Y., Zhu H., Zhang Q., Li M., Yan M., Wang R., Wang L., Welti R., Zhang W. and Wang X. 2009. Phospholipase dalpha1 and Phosphatidic Acid Regulate NADPH Oxidase Activity and Production of Reactive Oxygen Species in ABA-mediated Stomatal Closure in Arabidopsis. Plant Cell, 21(8): 2357-2377.
35. Zhao, S. J. and Li, D. Q. 1999. Experiment Guide of Modern Plant Physiology. Science Press, Beijing, PP. 23-25.
36. Zhou, F. Q., Xu, L. C. and Zhang, Y. Q. 2002. The Shandong Trichosanthes kirilowii Production Situation Survey. J. Shandong University Traditional Chinese Medicine, 26: 379-381.