Resistance Mechanisms to Chlorpyrifos in Iranian Populations of the Two-spotted Spider Mite, Tetranychus urticae (Acari: Tetranychidae)

Authors
1 Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Islamic Republic of Iran.
2 Department of Plant Protection, Faculty of Agriculture, University of Guilan, Rasht, Islamic Republic of Iran.
Abstract
The toxicity of chlorpyrifos to three Iranian populations of two-spotted spider mite, collected from Isfahan (ISR), Yazd (Yz) and Guilan (GUS2) Provinces were surveyed using the residual contact vial bioassay. The bioassay results showed that resistance ratios of ISR and Yz populations were 176.90 and 9.78 fold compared to the GUS2 population, respectively. Determination of esterase and glutathione-S-transferase activity and their kinetic parameters showed that ISR population had the highest specific activity and specificity constant among the studied populations. Besides, the content of mixed function oxidases in ISR population was the highest. However, synergistic effects of Piperonyl Butoxide, Diethyl Maleate and Triphenyl Phosphate showed that metabolic enzymes did not play an important role in resistance to chlorpyrifos in ISR and Yz populations and enhanced activity of esterase, glutathione-S-transferase and content of mixed function oxidases in these populations were probably due to resistance to some other acaricides. To determine the role of acetylcholinesterase insensitivity in resistance mechanisms, kinetic parameters and inhibitory effect of chlorpyrifos-oxon on this enzyme were investigated. The Km value of acetylcholinesterase was determined as 0.036, 0.04, and 0.050 mM using acetylthiocholine iodide for GUS2, Yz, and ISR populations, respectively. In addition, the insensitivity ratios of chlorpyrifos-oxon on acetylcholinesterase activity were estimated at 23.30 and 2.96 for ISR and Yz populations, respectively. These results confirmed amino acid substitutions in active site of this enzyme and also indicated that resistant population possed qualitatively altered AChE.

Keywords


1. Alizadeh, A., Talebi, K., Hosseininaveh, V. and Ghadamyari, M. 2011. Metabolic Resistance Mechanisms to Phosalone in the Common Pistachio Psyllid, Agonoscena pistaciae (Hem.: Psyllidae). Pestic. Biochem. Physiol., 101: 59–64.
2. Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W. and Lipman, D. J. 1997. Gapped BLAST and PSI- BLAST: A New Generation of Protein Database Search Programs. Nucleic Acids Res., 25: 3389-3402.
3. Anazawa, Y., Tomita, T., Aiki, T., Kozaki, T. and Kono, Y. 2003. Sequence of a cDNA Encoding Acetylcholinesterase from Susceptible and Resistant Two-spotted Spider Mite, Tetranychus urticae. Insect Biochem. Mol. Biol., 33: 509-514.
4. Ay, R. and Gurkan, M. O. 2005. Resistance to Bifenthrin and Resistance Mechanisms of Different Strains of the Two Spotted Spider Mite (Tetranychus urticae) from Turkey. Phytoparasitica, 33: 237-244.
5. Ay, R. and Yorulmaz, E. S. 2010. Inheritance and Detoxification Enzyme Levels in Tetranychus Urticae Koch (Acari: Tetranychidae) Strain Selected with Chlorpyrifos. J. Pest. Sci., 83: 85-96.
6. Ballantyne, G. H. and Harrison, R. A. 1967. Genetic and Biochemical Comparisons of Organophosphate Resistance between Strains of Spider Mites (Tetranychus species: Acari). Entomol. Exp. Appl., 10: 231-239.
7. Brogdon, W. G., McAllister, J. C. and Vulule, J. 1997. Heme Peroxidase Activity Measured in Single Mosquitoes Identifies Individuals Expressing An Elevated Oxidase for Insecticide Resistance. J. Am. Mosq. Control Assoc., 13: 233-237.
8. Cranham, J. E. and Helle, W. 1985. Pesticide Resistance in Tetranychidae. In: "Spider Mites: Their Biology, Natural Enemies and Control", (Eds.): Helle, W. and Sabelis, M. W.. Elsevier, Amsterdam, 458 PP.
9. Davis, B. J. 1964. Disc Electrophoresis II. Method and Application to Human Serum Proteins. Ann. NY Acad. Sci., 121: 404-427
10. Devorshak, C. and Roe, R. M. 1998. The Role of Esterases in Insecticide Resistance. Rev. Toxicol., 2: 501-537.
11. Enayati, A. A. and Motevalli Haghi, F. 2007. Biochemistry of Pyrethroid Resistance in Germancockroach (Dictyoptera, Blatellidae) from Hospitals of Sari, Iran. Iran. Biomed. J., 11: 251-258.
12. Fan, Z. J. and Cheng, N. C.1996. Insecticidal Resistance Mechanism of Tetranychus runcatus. Ehara. Acta Phytophylactica Sin., 23: 175-180.
13. Ghadamyari, M., Talebi, K., Mizuno, H. and Kono, Y. 2008a. Oxydemeton-methyl Resistance, Mechanisms, and Associated Fitness Cost in Green Peach Aphids (Hemiptera: Aphididae). J. Econ. Entomol., 101: 1432-1438.
14. Ghadamyari, M., Mizuno, H., Suenghyup, O., Talebi, K. and Yoshiaki, K. 2008b. Studies on Pirimicarb Resistance Mechanisms in Iranian Populations of the Peach-potato Aphid, Myzus persicae. Appl. Entomol. Zool., 43: 149-157.
15. Gorman, K., Hewitt, F., Denholm, I. and Devine, G. J. 2001. New Developments in Insecticide Resistance in the Glasshouse Whitefly (Trialeurodes vaporariorum) and the Two-spotted Spider Mite (Tetranychus urticae) in the UK. Pest. Manag. Sci., 58: 123-130.
16. Habig, W. H., Pabst, M. J. and Jakoby, W. B. 1974. Glutathion S-transferase, the First Step in Mercapturic Acid Formation. J. Biol. Chem., 249: 7130-7139
17. Helle, W. 1962. Genetics of Resistance to Organophosphorus Compounds and Its Relation to Diapause in Tetranychus urticae Koch (Acari). Eur. J. Plant Pathol., 63: 155-195.
18. Helle, W. 1984. Aspects of Pesticide Resistance in Mites. In: "Acarology VI", (Eds.): Griffiths, D. A. and Bowman, C. E.. Ellis Horwood, Chichester, PP.122–131.
19. Khajehali, J., Van Leeuwen, T., Grispou, M., Morou, E., Alout, H., Weill, M., Tirry, L., Vontas, J. and Tsagkarakou, A. 2010. Acetylcholinesterase Point Mutations in European Strains of Tetranychus urticae (Acari: Tetranychidae) Resistant to Organophosphates. Pest. Manage. Sci., 66: 220-228.
20. Kuwahara, M. 1982. Insensitivity of the Acetylcholinesterase from the Organophosphate-Resistant Kanzawa Spider Mite, Tetranychus kanzawai Kishida (Acarina: Tetranychidae), to Organophosphorus and Carbamate Insecticides. Appl. Entomol. Zool., 17: 486-493.
21. Kwon, D. H., Choi, J. Y., Je, Y. H. and Lee, S. H. 2012. The Overexpression of Acetylcholinesterase Compensates for the Reduced Catalytic Activity Caused by Resistance-Conferring Mutations in Tetranychus urticae. Insect. Biochem. Mol. Biol., 42: 212-219.
22. Kwon, D. H., Clark, M. and Lee, S. H. 2010a. Extensive Gene Duplication of Acetylcholinesterase Associated with Organophosphate Resistance in the Two-spotted Spider Mite. Insect. Mol. Biol., 19(2): 195–204.
23. Kwon, D. H., Seong, G. M., Ahn, J., Lee, J., Clark, M. and Lee, S. H. 2010b. Acetylcholinesterase Point Mutations Putatively Associated with Monocrotophos Resistance in the Two-spotted Spider Mite. Pestic. Biochem. Physiol., 96: 36-42.
24. LeOra Software. 1987. POLO-PC: A Users Guide to Probit or Logit Analysis. LeOra Software, Barkeley, California.
25. Lewis, P. R. and Shute, C. C. 1966. The Distribution of Cholinesterase in Cholinergic Neurons Demonstrated with the Electron Microscope. J. Cell. Sci., 1: 381-390.
26. Li, G-Q., Xue, X-F., Zhang, K-J. and Hong, X-Y. 2010. Identification and Molecular Phylogeny of Agriculturally Important Spider Mites (Acari: Tetranychidae) Based on Mitochondrial and Nuclear Ribosomal DNA Sequences, with an Emphasis on Tetranychus. Zootaxa, 2467: 1-15.
27. Lin, H., Xue, C. H., Wang, J. J., Li, M., Lu, W. C. and Zhao, Z. M. 2009. Resistance Selection and Biochemical Mechanism of Resistance to Two Acaricides in Tetranychus cinnabarinus (Boiduval). Pestic. Biochem. Physiol., 93: 47-52.
28. Mahdavi Moghaddam, M., Ghadamyari, M. and Talebi, K. 2012. Resistance Mechanisms to Fenazaquin in Iranian Populations of Two Spotted Spider Mite, Tetranychus urticae Koch (Acari: Tetranychidae). Int. J. Acarol., 38: 138-145.
29. Memarizadeh, N., Ghadamyaria, M., Sajedi, R. H. and Jalali Sendi, J. 2011. Characterization of Esterases from Abamectin-resistant and Susceptible Strains of Tetranychus urticae Koch (Acari: Tetranychidae). Int. J. Acarol., 37: 271-281.
30. Navajas, M., Gutierrez, M., Lagnel, J. and Boursot, P. 1996. Mitochondrial Cytochrome Oxidase I in Tetranychid Mites: A Comparison between Molecular Phylogeny and Changes of Morphological and Life History Traits. Bull. Ent. Res., 86: 407-417.
31. Ojha, A., Yaduvanshi, S. K. and Srivastava, N. 2011. Effect of Combined Exposure of Commonly Used Organophosphate Pesticides on Lipid Peroxidation and Antioxidant Enzymes in Rat Tissues. Pestic. Biochem. Physiol., 99: 148-156.
32. Ros, V. I. D. and Breeuwer, J. A. J. .2007. Spider Mite (Acari: Tetranychidae) Mitochondrial COI Phylogeny Reviewed: Host Plant Relationships, Phylogeography, Reproductive Parasites and Barcoding. Exp. Appl. Acarol., 42: 239-262.
33. Smissaert, H. R., Voerman, S., Oostenbrugge, L. and Renooy, N. 1970. Acetylcholinesterase of Organophosphate Susceptible and Resistant Spider Mites. J. Agric. Food. Chem., 18: 66-75.
34. Stumpf, N. and Nauen, R. 2001. Cross-resistance, Inheritance and Biochemistry of Mitochondrial Electron Transport Inhibitor Acaricide Resistance in Tetranychus urticae (Acari: Tetranychidae). J. Econ. Entomol., 94: 1577–1583.
35. Tag El-Din, M. H. 1990. A Rapid Detection of Organophosphorus Resistance with Insensitive Acetylcholinesterase in Spider Mites Tetranychus urticae Koch on Cotton. J. Appl. Entomol., 110: 416-420.
36. Thompson, J. D., Higgins, D. G. and Gibson, T. J. 1994. Clustal W: Improving the Sensivity of Progressive Multiple Sequence Alignment Through Sequence Weighting, Positions-specific Gap Penalties and Weigh Matrix Choice. Nucleic Acids Res., 22: 4673-4680.
37. Tsagkarakou, A., Navajas, M., Cuany, A., Chevillon, C. and Pasteur, N. 2002. Mechanisms of Resistance to Organophosphates in Tetranychus urticae (Acari: Tetranychidae) from Greece. Insect. Biochem. Mol. Biol., 32: 417–424.
38. van Asperen, K. 1962. A Study of Housefly Esterases by Means of a Sensitive Colorimetric Method. J. Insect Physiol., 8: 401-416.
39. van Leeuwen, T. and Tirry, L. 2007. Esterase-mediated Bifenthrin Resistance in a Multiresistant Strain of the Two-spotted Spider Mite, Tetranychus urticae. Pest Manage Sci. 63: 150-156.
40. Van Leeuwen, T., Vontas, J., Tsagkarakou, A. and Tirry, L. 2009. Mechanisms of Acaricide Resistance in the Two-spotted Spider Mite Tetranychus urticae. In: "Biorational Control of Arthropod Pests", (Eds.): Ishaaya, I. and Horowitz, A. R.. Springer Science and Business Media, Dordrecht, The Netherlands, PP. 347-393.
41. Voss, G. and Matsumura, F. 1964. Resistance to Organophosphorus Compounds in the Two-Spotted Spider Mite: Two Different Mechanisms of Resistance. Nature, 202: 319-320.
42. Zahavi, M. and Tahori, A. S. 1970. Sensitivity of Acetylcholinesterase in Spider Mites to Organophosphorous Compounds. Biochem. Pharmacol., 19: 219-225.
43. Zhang, Z-Q. 2003. Mites of Greenhouses Identification, Biology and Control. CABI Publishing, Cambridge, PP.47-55.