1. Albayrak, S. 2008. Use of Reflectance Measurements for the Detection of N, P, K, ADF and NDF Contents in Sainfoin Pasture. Sensors, 8: 7275-7286.
2. Artigas F. J. and Yang, J. S. 2005. Hyperspectral Remote Sensing of Marsh Species and Plant Vigour Gradient in the New Jersey Meadowlands. Int. J. Remote Sens., 26(23): 5209-5220.
3. Balabanli, C., Albayrak, S. and Yuksel, O. 2010. Effects of Nitrogen, Phosphorus and Potassium Fertilization on the Quality and Yield of Native Rangeland. Turk. J. Field Crops, 15(2): 164-168.
4. Babar, M. A., Reynolds, M. P., van Ginkel, M., Klatt, A. R., Raun, W. R. and Stone, M. L. 2006. Spectral Reflectance Indices as a Potential Indirect Selection Criteria for Wheat Yield under Irrigation. Crop Sci., 46: 578-588.
5. Basayigit, L., Albayrak, S. and Senol, H. 2009. Analysis of VNIR Reflectance for Prediction of Macro and Micro Nutrient and Chlorophyll Contents in Apple Trees (Malus communis). Asian J. Chem., 21(2): 1302-1308.
6. Basayigit L. and Senol, H. 2009. Prediction of Plant Nutrient Contents in Deciduous Orchards Fruits Using Spectroradiometer. Int. J. ChemTech Res., 1(2): 212-224.
7. Bell, G. E., Martin, D. L., Wiese, S. G., Dobson, D. D., Smith, M. W., Stone, M. L. and Solie, J. B. 2002. Vehicle-mounted Optical Sensing: An Objective Means for Evaluating Turf Quality. Crop Sci., 42: 197-201.
8. Bogrekci, I. and Lee, W. S. 2005. Spectral Phosphorus Mapping Using Diffuse Reflectance of Soils and Grass. Biosystems Eng., 91(3): 305-312.
9. Brink, G. E., Rowe, D. E., Sistani, K. R. and Adeli, A. 2003. Bermudagrass Cultivar Response to Swine Effluent Application. Agron. J., 95: 597-601.
10. Carpici, E. B. 2011. Changes in Leaf Area Index, Light Interception, Quality and Dry
Matter Yield of an Abandoned Rangeland as Affected by the Different Levels of Nitrogen and Phosphorus Fertilization. Turk. J. Field Crops, 16(2): 117-120.
11. Castro-Esau, K. L., Sánchez-Azofeifa, G. A. and Rivard, B. 2006. Comparison of Spectral Indices Obtained Using Multiple Spectroradiometers. Remote Sens. Environ., 103: 276-288.
12. Cho, M. A., Skidmore, A., Corsi, F., Van-Wieren, S. E. and Sobhan, I. 2007. Estimation of Green Grass/Herb Biomass from Airborne Hyperspectral Imagery Using Spectral Indices and Partial Least Squares Regression. Int. J. Appl. Earth Obs., 9: 414-424.
13. Curran, P. J. 1989. Remote Sensing of Foliar Chemistry. Remote Sens. Environ., 30: 271-278.
14. Darvishzadeh, R., Skidmore, A. K., Schlerf, M., Atzberger, C. G. and Cho, M. A. 2008. LAI and Chlorophyll Estimation for a Heterogeneous Grassland Using Hyperspectral Measurements. ISPRS J. Photogramm., 63: 409-426.
15. Darvishsefat, A. A., Abbasi, M. and Schaepman, M. E. 2011. Evaluation of Spectral Reflectance of Seven Iranian Rice Varieties Canopies. J. Agr. Sci. Tech., 13: 1091-1104.
16. Daughtry, C. H. T., Walthall, C. L., Kim, M. S., De-Colstoun, E. B. and McMurtrey, J. E. 2000. Estimating Corn Leaf Chlorophyll Concentration from Leaf and Canopy Reflectance. Remote Sens. Environ., 74: 229-239.
17. Gamon, J. A. and Surfus, J. S. 1999. Assessing Leaf Pigment Content and Activity with a Reflectometer. New Phytol., 143: 105–117.
18. Genc H., Genc, L. Turhan, H., Smith, S. E. and Nation, J. L. 2008. Vegetation Indices as Indicators of Damage by the Sunn Pest (Hemiptera: Scutelleridae) to Field Grown Wheat. Afr. J. Biotechnol., 7(2): 173-180.
19. Ghasemloo, N, Mobasheri, M. R. and Rezaei, Y. 2011. Vegetation Species Determination Using Spectral Characteristics and Artificial Neural Network (SCANN). J. Agr. Sci. Tech., 13: 1223-1232.
20. Gianelle, D. and Vescovo, L. 2007. Determination of Green Herbage Ratio in Grasslands Using Spectral Reflectance. Methods and Ground Measurements. Int. J. Remote Sens., 28: 931-942.
21. Gitelson A. A., Vina, A., Arkebauer, T. J., Rundquist, D. C., Keydan, G. and Leavitt, B. 2003. Remote Estimation of Leaf Area Index and Green Leaf Biomass in Maize Canopies. Geophys. Res. Lett., 30: 1248-1255.
22. Halgerson, J. L., Sheaffer, C. C., Martin, N. P., Peterson, P. R. and Weston, S. J. 2004. Near-infrared Reflectance Spectroscopy Prediction of Leaf and Mineral Concentrations in Alfalfa. Agron. J., 96: 344-351.
23. Han, L. and Rundquist, D. C. 2003. The Spectral Responses of Ceratophyllum demersum at Varying Depths in an Experimental Tank. Int. J. Remote Sens., 24: 859-864.
24. Han, L. 2005. Estimating Chlorophyll-a Concentration Using First-derivative Spectra in Coastal Water. Int. J. Remote Sens., 26(23): 5235-5244.
25. Kacar, B. and Inal, A. 2008. Plant Analysis. Nobel Press No: 1241, 891 pp.
26. Lamb, D. W., Steyn-Ross, M., Schaare, P., Hanna, M. M., Silvester, W. and Steyn-Ross, A. 2002. Estimating Leaf Nitrogen Concentration in Ryegrass (Lolium spp.) Pasture Using the Chlorophyll Red-edge: Theoretical Modelling and Experimental Observations. Int. J. Remote Sens., 23(18): 3619-3648.
27. Lamrani, Z., Belakbir, A., Ruiz, J. M., Ragala, L., Lopez-Cantarero, I. and Romero, L. 1996. Influence of Nitrogen, Phosphorus, and Potassium on Pigment Concentration in Cucumber Leaves. Commun. Soil Sci. Plant Anal., 27: 1001–1012.
28. Levizou, E., Drilias, P., Psaras, G. and Manetas, Y. 2004. Nondestructive Assessment of Leaf Chemistry and Physiology through Spectral Reflectance Measurements May be Misleading When Changes in Trichome Density Co-occur. New Phytologist, 165: 463-472.
29. Lin, Y. and Liquan, Z. 2006. Identification of the Spectral Characteristics of Submerged Plant Vallisneria spiralis. Acta Ecol. Sin., 26: 1005-1011.
30. Liu, W., Baret, F., Gu, X., Zhang, B., Tong, Q and Zheng, L. 2003. Evaluation of Methods for Soil Surface Moisture Estimation from Reflectance Data. Int. J. Remote Sens., 24(10): 2069-2083
31. Merzlyak, M. N., Gitelson, A. A., Chivkunova, O. B., Solovchenko, A. E. and Pogosyan, S. I. 2003. Application of Reflectance Spectroscopy for Analysis of Higher Plant Pigments. Russ. J. Plant Physl., 50: 704-710.
32. Miles, N. 2010. Challenges and Opportunities in Leaf Nutrient Data Interpretation. Proc. S. Afr. Sug. Technol. Ass., 83: 205-215.
33. Mobasheri, M. R. and Rahimzadegan, M. 2012. Introduction to Protein Absorption Lines Index for Relative Assessment of Green Leaves Protein Content Using EO-1 Hyperion Datasets. J. Agr. Sci. Tech., 14: 135-147.
34. Mutanga, O., Skidmore, A. K. and Van Wieren, S. 2003. Discriminating Tropical Grass Canopies (Cenchrus ciliaris) Grown under Different Nitrogen Treatments Using Spectroradiometry. ISPRS J. Photogramm., 57(4): 263-272.
35. Mutanga, O., Skidmore, A. K. and Prins, H. H. T. 2004. Predicting In situ Pasture Quality in the Kruger National Park, South Africa, Using Continuum-removed Absorption Features. Remote Sens. Environ., 89: 393-408.
36. Mutanga, O., Skidmore, A. K., Kumar, L. and Ferwerda, J. 2005. Estimating Tropical Pasture Quality at Canopy Level Using Band Depth Analysis with Continuum Removal in the Visible Domain. Int. J. Remote Sens., 26: 1093-1108.
37. Mutanga, O. and Kumar, L. 2007. Estimating and Mapping Grass Phosphorus Concentration in an African Savanna Using Hyperspectral Image Data. Int. J. Remote Sens., 28: 4897-4911.
38. Oosterhuis, D. M. and Bednarz, C. W. 1997. Physiological Changes during the Development of Potassium Deficiency in Cotton. In: "Plant Nutrition for Sustainable Food Production and Environment", (Eds.): Ando, T. et al.. Kluwer Academic Publ., Dordrecht, The Netherlands, PP. 347–351.
39. Osborne, S. L., Schepers, J. S., Francis, D. D. and Schlemmer, M. R. 2002. Detection of Phosphorous and Nitrogen Deficiencies in Corn Using Spectral Radiance Measurements. Agron. J., 94: 1215-1221.
40. Ozyigit, Y. and Bilgen, M. 2011. Determination of Nitrogen Levels Based on Spectral Reflectance Values in Sheep Fescue (Festuca ovina L.). Turk. J. Field Crops, 16: 29-32.
41. Porder, S., Asner, G. P. and Vitousek, P. M. 2005. Ground-based and Remotely Sensed Nutrient Availability across a Tropical Landscape. Proc. Natl. Acad. Sci. (PNAS), 102: 10909-10912.
42. Pullanagari, R. R., Yule, I., King, W., Dalley, D. and Dynes, R. 2011. The Use of Optical Sensors to Estimate Pasture Quality. Int. J. Smart Sens.Intell. Syst., 4: 125-137.
43. Reeves, M. C., Jerome, C. W. and Running, S. W. 2001. Mapping Weekly Rangeland Vegetation Productivity Using MODIS Algorithms. J. Range Manage., 54: 90-105.
44. Salisbury, F. B. and Ross, C. W. 1991. Mineral Nutrition. 6. In: "Plant Physiology". 4nd Edition, Wadsworth Publ. Co., Belmont, CA, PP. 116-135.
45. Starks, P. J., Zhao, D., Phillips, W. A. and Coleman, S. W. 2006. Development of Canopy Reflectance Algorithms for Real-time Prediction of Bermuda Grass Pasture Biomass and Nutritive Values. Crop Sci., 46: 927-934.
46. Takahashi, T., Yasuoka, Y. and Fujii, T. 2002. Hyperspectral Remote Sensing of Riparian Vegetation and Leaf Chemistry Contents. Proceedings of the 23rd Asian Conference on Remote Sensing No. 173, 25-29 November 2002, Nepal Kathmoandu, PP. 1-8.
47. Tarr, A. B., Moore, K. J. and Dixon, P. M. 2005. Spectral Reflectance as a Covariate for Estimating Pasture Productivity and Composition. Crop Sci., 45: 996-1003.
48. Wilkerson, J. 2011. Ground-Based Remote Sensor Development Plant Health Determination. http://sensors.ag.utk.edu/Projects/Plant_Health_Sensor.html, (Access date: 30.07.2012).
49. Winterhalter, L. Mistele, B. and Schmidhalter, U. 2012. Assessing the Vertical Footprint of Reflectance Measurements to Characterize Nitrogen Uptake and Biomass Distribution in Maize Canopies. Field Crop. Res., 129: 14–20.
50. Wright, D. L., Rasmussen, V. P. and Ramsey, R. D. 2005. Comparing the Use of Remote Sensing with Traditional Techniques to Detect Nitrogen Stress in Wheat. Geocarto Int., 20: 63-68.
51. Zhao, D., Oosterhuis, D. M and Bednarz, C. W. 2001. Influence of Potassium Deficiency on Photosynthesis, Chlorophyll Content and Chloroplast Ultra Structure of Cotton Plants. Photosynthetica, 39(1): 103-109.
52. Zeng, X., Dickinson, R. E., Walker, A., Shaikh, M., Defries, R. S. and Qi, J. 2000. Derivation and Evaluation of Global 1-km Fractional Vegetation Cover Data for Land Modeling. J. Appl. Meteorl., 39: 826-839.