Spatial Distribution of Macrophomina phaseolina and Soybean Charcoal Rot Incidence Using Geographic Information System (A Case Study in Northern Iran)

Authors
1 Department of Plant Pathology, College of Agriculture, Tarbiat Modares University, Tehran, Islamic Republic of Iran.
2 Department of Plant Pathology, Agriculture and Natural Resources Research Center of Golestan, Gorgan, Islamic Republic of Iran.
Abstract
Charcoal rot caused by Macrophomina phaseolina is an important disease of soybean throughout the world. To understand the spatial distribution of soybean charcoal rot incidence and M. phaseolina populations in Golestan Province, 172 soybean fields were surveyed for population density, in two successive years, and integrated with Geographic Information System (GIS). Each year, 60 fields were also surveyed for disease incidence. Propagule density was determined by assaying five 1-g subsamples of soil from each field using a size-selective sieving procedure. In the seasons of 2009-2010 and 2010-2011, disease incidence ranged from 0 to 97% and 3 to 91% with the highest in Gorgan and Aliabad, respectively. Total mean of disease incidence were 21.01 and 35.84 percent in the province. In the two sampling years, Sclerotia were recovered from 73.33 and 93.57% of the total fields. The average population density per gram of soil ranged from 0.65 to 14.31 and 4.7 to 16.9, respectively, with the highest levels in Aliabad in both years. Charcoal rot incidence was positively correlated with soil populations of M. phaseolina (r= 0.61 and r= 0.47, P= 0.01). Geostatistical analyses of the survey data showed that the influence range of propagule density and disease incidence was between 8,000 to 14,000 m. In general, no significant correlation could be found between soil factors and sclerotia numbers. But, higher average air temperatures and decreased precipitation may have a significant effect on disease intensity.

Keywords


1. Allen, T. W., Maples, H. W., Workneh, F., Stein, J. M., and Rush, C. M. 2008. Distribution and Recovery of Tilletia indica Teliospores from Regulated Wheat Fields in Texas. Plant Dis., 92: 344-350.
2. Azahar, T. M., Mustapha, J. C., Mazliham, S., and Boursier, P. 2011. Temporal Analysis of Basal Stem Rot Disease in Oil Palm Plantations: An Analysis on Peat Soil. Internat. J. Engine. Technol., 11(3): 96-101.
3. Burrough, P. A. and McDonnell, R. A. 1998. Principles of Geographical Information Systems. Spatial Information Systems and Geostatistics. Oxford University Press, New York, 333 PP.
4. Cambardella, C. A., Moorman, T. B., Novak, J. M., Parkin, T. B. Karalan, D. L., Turco, R. F. and Konopka, A. E. 1994. Field Scale Variability of Soil Properties in Central Iowa Soils. Soil Sci. Soc. Am., 58: 1501-1511.
5. Campbell, C. L. and van der Gaag, D. J. 1993. Temporal and Spatial Dynamics of Microsclerotia of Macrophomina phaseolina in Three Fields in North Carolina over Four to Five Years. Phytopath., 83: 1434–1440.
6. Campbell, C. L. and Nelson, L. A. 1986. Evaluation of an Assay for Quantifying Populations of Macrophomina phaseolina Sclerotia from Soil. Plant Dis., 70:645-647.
7. Dhingra,'O. D. and Sinclair, J. B. 1974. Effect of Soil Moisture and Carbon: Nitrogene Ratio on Survival of Macrophomina phaseolina in Soybean Stem in Soil. Plant Dis. Report, 58: 1034-1037.
8. Dhingra,,'O. D. and Sinclair, J. B. 1975. Survival of Macrophomina phaseolina Sclerotia in Soil: Effect of Soil Moisture, Carbon:Nitrogene Ratios, Carbon Sources, And Nitrogen Concentrations. Phytopath., 65: 236-240.
9. Dhingra,,'O. D. and Sinclair, J. B. 1978. Biology and Pathology of Macrophomina phaseolina. Universidad Federal de Vigosa, Brazil, 166 PP.
10. Francl, L. J. and Neher, D. A. 1997. Exercises in Plant Disease Epidemiology. The American Phytopathological Society, St. Paul, MN, 233PP.
11. Francl, L. J., Wyllie, T. D. and Rosenbrock, S. M. 1988. Influence of Crop Rotation on Population Density of Macrophomina phaseolina in Soil Infested with Heterodera glycines. Plant Dis., 72: 760–764.
12. Goovaerts P. 1997. Geostatistics for Natural Resources Evaluation. Oxford University Press, New York, 483PP.
13. Griffin, G. J. and Baker, R. 1991. Population Dynamics of Plant Pathogens and Associated Organisms in Soil in Relation to Infectious Inoculum. In: "Soil Solarization", (Eds.): Katan, J. and deVay, J. E.. CRC Press, Boca Raton, FL, PP. 3-21.
14. Isaaks, E. H. and Srivastava, R. M. 1989. Applied Geostatistics. Oxford University Press, New York, 580PP.
15. Jaime-Garcia, R. and Cotty, P. J. 2006. Spatial Relationships of Soil Texture and Crop Rotation to Aspergillus flavus Community Structure in South Texas. Phytopath., 96: 599-607.
16. Jaime-Garcia, R., Orum, T. V., Felix-Gastelum, R., Trinidad-Correa, R., VanEtten, H. D. and Nelson, M. R. 2001. Spatial Analysis of Phytophthora infestans Genotypes and late Blight Severity on Tomato and Potato in the Del Fuerte Valley Using Geostatistics and Geographic Information Systems. Phytopath., 91: 1156-1165.
17. Lodha, S. and Singh, M. 1985. Quantitative Determination of Macrophomina phaseolina (Tassi) Goid. In: "Grass-legume Intercropping Systems". Ann. Arid Zone, 23: 259-261.
18. Manici, L. M., Caputo, F. and Cerato, C. 1995. Temperature Responses of Isolates of Macrophomina phaseolina from Different Climatic Regions of Sunflower Production in Italy. Plant Dis., 79: 934-938.
19. Mihail, J. D. 1989. Macrophomina phaseolina: Spatio-temporal Dynamics of Inoculum and of Disease in a Highly Susceptible Crop. Phytopath., 79: 848-855.
20. Mihail, J. D. and Alcorn, S. M. 1987. Macrophomina phaseolina: Spatial Patterns in a Cultivated Soil and Sampling Strategies. Phytopath., 77: 1126-1131.
21. Mohammadi, J. 2002. Spatial Variability of Soil Fertility, Wheat Yield and Weed Density in a One-hectare Field in Shahre Kord. J. Agric. Sci. Technol., 4: 83-92.
22. Ndiaye, M., Termorhuizen, A. J. and Van Burggen, A. H. C. 2007. Combined Effects of Solarization and Organic Amendment on Charcoal Rot Caused by Macrophomina phaseolina in the Sahel. Phytoparasitica, 35(4): 392-400.
23. Nelson, M. R., Orum, T. V., Jaime-Garcia, R. and Nadeem, A. 1999. Applications of Geographic Information Systems and Geostatistics in Plant Disease Epidemiology and Management. Plant Dis., 83: 308-319.
24. Nelson, M. R., Felix-Gastelum, R., Orum, T. V., Stwoell, L. J. and Myers, D. E. 1994. Geographical Information Systems and Geostatistics in the Design and Validation of Regional Plant Virus Management Programs. Phytopath., 84: 898-905.
25. Nutter, F. W., Jr., Wegulo, S. N. and Martinson, C. A. 1995. Use of Geographic Information Systems to Generate Disease Prevalence, Incidence, and Severity Maps for Seed Corn Production in 1992. Phytopath., 85: 1173. (Abstract)
26. Olanya, M., and Campbell, C. L. 1988. Effects of Tillage on the Spatial Pattern of Microsclerotia of Macrophomina phaseolina. Phytopath., 78: 217-221.
27. Orum, T. V., Bigelow, D. M., Nelson, M. R., Howell, D. R. and Cotty, P. J. 1997. Spatial and Temporal Patterns of Aspergillus flavus Strain Composition and Propagule Density in Yuma County, Arizona, Soils. Plant Dis., 81: 911-916.
28. Rayat panah, S., Foroutan, A. and Oladi, M. 1993. Study of Charcoal Rot (Macrophomina phaseolina) in Mazandaran and Reasons for Its Epidemic. P116, In: Proceeding of 11th Iranian Plant Protection Congress, 28 Aug.-2 Sept., Rasht, Iran, 276 pp.
29. Rayatpanah, S. and Alavi, S. V. 2006. Study on Soybean Charcoal Rot Disease in Mazandaran. J. Agric. Sci. Nat. Res., 13(3): 107-114.
30. Short, G. E., Wyllie, T. D. and Ammon, V. D. 1978. Quantitative Enumeration of Macrophomina phaseolina in Soybean Tissues. Phytopath., 68(5): 736-741.
31. Smith, G. S. and Wyllie, T. D. 1999. Charcoal Rot. In: "Compendium of Soybean Disease", (Eds.): Hartman, G. L., Sinclair, J. B. and Rupe. J. C.. 4th Edition, American Phytopathological Society, St. Paul, MN, PP. 29–31
32. Star, J. and Estes, J. 1990. Geographic Information Systems: An Introduction. Prentice Hall, Englewood Cliffs, NJ, 303 PP.
33. Thomas, C. S., Skinner, P. W., Fox, A. D., Greer, C. A. and Gubler, W. D. 2002. Utilization of GIS/GPS-Based Information Technology in Commercial Crop Decision Making in California, Washington, Oregon, Idaho, and Arizona. J. Nematol., 34(3): 200–206.
34. Wu, B. M., van Bruggen, A. H. C., Subbarao, K. V. and Pennings, G. G. H. 2001. Spatial Analysis of Lettuce Downy Mildew Using Geostatistics and Geographic Information Systems. Phytopath., 91: 134-142.
35. Wyllie, T. D. 1988. Charcoal Rot of Soybean: Current Status. In: "Soybean Diseases of the North Central Region", (Eds.): Wyllie, T. D. and Scott, D. H.. American Phytopathological Society, St. Paul, MN, PP. 106–113.
36. Young, D. J. and Alcorn, S. M. 1984. Latent Infection of Euphorbi alathyris and Weeds by Macrophomina phaseolina and Populations in Arizona Field Soil. Plant Dis., 68: 587-589.
37. Wrather, J. A., Kendig, S. R. and Tyler, D. D. 1998. Tillage Effects on Macrophomina phaseolina Population Density and Soybean Yield. Plant Dis., 82: 247-250.