Growth and Some Physiological Activities of Pepper (Capsicum annuum L.) in Response to Cadmium Stress and Mycorrhizal Symbiosis

Author
Department of Botany, Faculty of Science, South Valley University, 83523 Qena, Egypt.
Abstract
A greenhouse experiment was conducted to investigate the effects of mycorrhial fungus (Glomus mosseae) on cadmium (Cd) toxicity in pepper (Capsicum annuum L. cv. Zhongjiao 105) plants. Half of plants were inoculated with arbuscular mycorrhizal fungi (AMF). Cd was supplied in the form of cadmium chloride at 0.0, 0.1 and 0.5 mM through irrigation water in the soil. Mycorrhizal colonization was higher in the control than in cadmium-treated soil. Dry weights of root and shoot of mycorrhizal (M) plants were higher than non mycorrhizal (NM) ones in both control and cadmium treatments. Measurements of Cd concentration indicated that M plants immobilized more Cd in the root and partitioned less Cd to the shoots. Cd decreased the leaf chlorophyll content, total sugar and total protein contents, and the concentrations of phosphorous and magnesium. M plants had greater contents of chlorophyll, total sugar, total protein and P and Mg concentrations than NM plants. Moreover, increasing the Cd concentration caused an increase in malondialdehyde (MDA) content in leaves of pepper plants; however, M plants showed a lower MDA content than NM plants. Cd decreased the activity of superoxide dismutase (SOD) in leaves of NM and M plants, on the other hand, it increased the activity of peroxidase (POD) and ascorbate peroxidase (APX) in leaves of NM and M plants. APX was stimulated more than POD in M plants versus NM plants, suggesting that APX is a major player in H2O2-scavenging in M plants. The study suggests that mycorrhization with G. mosseae can be a suitable way to induce Cd-stress resistance in pepper plants.

Keywords


1. Abdel Latef, A. A. 2010. Changes of Antioxidative Enzymes in Salinity Tolerance among Different Wheat Cultivars. Cereal Res. Commun., 38: 43–55.
2. Abdel Latef, A. A. 2011. Influence of Arbuscular Mycorrhizal Fungi and Copper on Growth, Accumulation of Osmolyte, Mineral Nutrition and Antioxidant Enzyme Activity of Pepper (Capsicum annuum L.). Mycorrhiza, 21: 495-503.
3. Al-Ghamdi, A. A. M., Jais, H. M. and Khogali, A. 2012., Relationship between the Status of Arbuscular Mycorrhizal Colonization in the Roots and Heavy Metal and Flavonoid Contents in the Leaves of Juniperus procera. J. Ecol. Nat. Environ., 4: 212-218.
4. Allen, S. E. 1989. Chemical Analysis of Ecological Materials 2. Blackwell, London, pp.45.
5. Alscher, R. G., Erturk, N. and Heath, S. L. 2002. Role of Superoxide Dismutases (SODs) in Controlling Oxidative Stress in Plants. J. Exp. Bot., 53: 1331–1341.
6. Andrade, S. A. L., Silveira, A. P. D., Jorge, R. A. and de Abreu, M. F. 2008. Cadmium Accumulation in Sunflower Plants Influenced by Arbuscular Mycorrhiza. Int. J. Phytoremediat., 10: 1–13.
7. Arnon, D. J. 1949. Copper Enzymes in Isolated Chloroplasts. J. Plant Cell Physiol., 4: 29-30.
8. Badour, S. S. A. 1959. Analytisch–chemische Untersuchung des Kaliummangels bei Chlorella im Vergleich mit anderen Mangelzuständen. Ph.D. Dissertation Göttingen [Analytical-chemical Investigation of Potassium Deficiency in Chlorella in Comparison with Other Deficiencies]. PhD. Dissertation, Göttingen University Göttingen, Germany.
9. Bradford, M. M. 1976. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein Binding. Anal. Biochem., 72: 248–254.
10. Benavides, M. P., Gallego, S. M. and Tomaro, M. L. 2005. Cadmium Toxicity in Plants. Braz. J. Plant Physiol., 17: 21-34.
11. Bucher, M. 2006. Functional Biology of Plant Phosphate Uptake at Root and Mycorrhiza Interface. New Phytol., 173: 11-16.
12. Citterio, S., Prato, N., Fumagalli, P., Aina, R., Massa, N., Santagostino, A., Sgorbati, S. and Berta, G. 2005. The Arbuscular Mycorrhizal Fungus Glomus mosseae Induces Growth and Metal Accumulation Changes in Cannabis sativa L. Chemosphere, 59: 21-29.
13. Epstein, E. 1972. Mineral Nutrition of Plants: Principles and Perspectives, Wiley, New York, PP. 115–189.
14. Garg, N. and Aggarwal, N. 2012. Effect of Mycorrhizal Inoculation on Heavy Metal Uptake and Stress Alleviation of Cajanus cajan (L.) Millsp. Genotypes Grown in Cadmium and Lead Contaminated Soil. Plant Growth Regulat., 66: 9-26.
15. Gianinazzi-Pearson, V. and Gianinazzi, S. 1983. The Physiology of Arbuscular-Mycorrhizal Root. Plant Soil, 71: 197-209.
16. Gill, S. S., Khan, N. A. and Tuteja, N. 2012. Cadmium at High Dose Perturbs Growth, Photosynthesis and Nitrogen Metabolism While at Low Dose It up Regulates Sulfur Assimilation and Antioxidant Machinery in Garden Cress ( Lepidium sativum L.). Plant Sci., 182: 112-120.
17. Gill, S. S. and Tuteja, N. 2010. Reactive Oxygen Species and Antioxidant Machinery in Abiotic Stress Tolerance in Crop Plants. Plant Physiol. Biochem., 48: 909–930.
18. Giovannetti, M. and Mosse, B. 1980. An Evaluation of Techniques for Measuring Vesicular-arbuscular Infection in Roots. New Phytol., 84: 489–500.
19. Giri, B., Kapoor, R. and Mukerji, G. K. 2003. Influence of Arbuscular Mycorrhizal Fungi and Salinity on Growth, Biomass and Mineral Nutrition of Acacia auriculiformis. Biol. Fertil. Soils, 38: 170–175.
20. Göhre, V. and Paszkowski, U. 2006. Contribution of the Arbuscular Mycorrhizal Symbiosis to Heavy Metal Phytoremediation. Planta, 223: 1115-1122.
21. Guo, B., Liang, C. Y., Zhu, G. Y. and Zhao, J. F. 2007. Role of Salicylic Acid in Alleviating Oxidative Damage in Rice Roots (Oryza sativa) Subjected to Cadmium Stress. Env. Pollut., 147: 743-749.
22. Gzyl, J., Rymer, K. and Gwóźdź, E. A. 2009. Differential Response of Antioxidant Enzymes to Cadmium Stress in Tolerant and Sensitive Cell Line of Cucumber (Cucumis sativus L.). Acta Biochimica Polonica, 56: 723-727.
23. Hana, S., Rachid, R., Ibtissem, S., Houri, B. and Mohammed-Réda, D. 2008. Induction of Anti-oxidative Enzymes by Cadmium Stress in Tomato (Lycopersicon esculentum). African J. Plant Sci., 2: 072-076.
24. Heath, R. L. and Packer, L. 1968. Photoperoxidation in Isolated Chloroplasts. I. Kinetics and Stiochiometry of Fatty Acid Peroxidation. Arch. Biochem. Biophys., 125: 189–198.
25. Hutchinson, J. J., Young, S. D., Black, C. R. and West, H. M. 2004. Determining Uptake of Radio-labile Soil Cadmium by Arbuscular Mycorrhizal Hyphae Using Isotopic Dilution in a Compartmented-pot System. New Phytol., 164: 477–484.
26. IARC. 1993. Beryllium, Cadmium, Mercury and Exposures in the Glass Manufacturing Industry, in: IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. International Agency for Research on Cancer. Lyon, 58: 41–117.
27. Jain, M., Pal, M., Gupta, P. and Gadre, R. 2007. Effect of Cadmium on Chlorophyll Biosynthesis and Enzymes of Nitrogen Assimilation in Greening Maize Leaf Segments: Role of 2-oxoglutarate. Indian J. Exp. Biol., 45: 385-389.
28. Kapoor, R. and Bhatnagar, K. A. 2007. Attention of Cadmium Toxicity in Mycorrhizal Celery (Apium graveolens L.). World J. Microbiol. Biotech., 23: 1083-1089.
29. Kormanik, P. P., Bryan, W. C. and Schultz, R. C. 1980. Procedure and Equipment for Staining Large Number of Plant Roots for Endomycorrhizal Assay. Can. J. Microbiol., 26: 536–538.
30. Li, Y., Peng, J., Shi, P. and Zhao, B. 2009., The Effect of Cd on Mycorrhizal Development and Enzyme Activity of Glomus mosseae and Glomus intraradices in Astragalus sinicus L. Chemosphere, 75: 894-899.
31. Liu, L. Z., Qiang., Z. G., Long, Z. Y. and Jun, L. P. 2011. Growth, Cadmium Accumulation and Physiology of Marigold (Tagettes erecta L.) as Affected by Arbuscular Mycorrhizal Fungi. Pedosphere, 21: 319-327.
32. Lux, A., Martinka, M., Vaculík, M. and White, P. J. 2011. Root Responses to Cadmium in the Rhizosphere: A Review. J. Exp. Bot., 62: 21–37.
33. Malekzadeh E., Alikhani, AH., Savaghebi-Fioozabadi, R.G. and Zarei, M. 2011. Influence of Arbuscular Mycorrhizal Fungi and an Improving Growth Bacterium on Cd Uptake and Maize Growth in Cd-polluted Soils. Spanish J. Agric. Res., 9: 1213-1223.
34. Medina, A., Vassilev, N., Barea, J. M. and Azcon, R. 2005. Application of Aspergillus niger-treated Agrowaste Residue and Glomus mosseae for Improving Growth and Nutrition of Trifolium repens in a Cd-contaminated Soil. J. Biotechnol., 116: 369–378.
35. Meng, H., Hua, S., Shamsi, H.I., Jilani, G., Li, Y. and Jiang, L. 2009. Cadmium-induced Stress on the Seed Germination and Seedling Growth of Brassica napus L. and Its Alleviation through Exogenous Plant Growth Regulators. Plant Growth Regul., 58: 47-59.
36. Nakano, Y. and Asada, K. 1981. Hydrogen Peroxide is Scavenged by Ascorbate-specific Peroxidase in Spinach Chloroplasts. Plant Cell Physiol., 22: 867–880.
37. Parniske, M. 2008. Arbuscular Mycorrhiza: The Mother of Plant Root Endosymbiosis. Nat. Rev. Microbiol., 6: 763-775.
38. Polle, A., Otter, T. and Seifert, F. 1994. Apoplastic Peroxidases and Lignification in Needles of Norway Spruce (Picea abies L.). Plant Physiol., 106: 53–60.
39. Rivera-Becerril, F., Calantzis, C., Turnau, K., Caussanel, J. P., Belimov, A. A., Gianinazzi, S., Strasser, R. J. and Gianinazzi-Pearson, V. 2002. Cadmium Accumulation and Buffering of Cadmium-induced Stress by Arbuscular Mycorrhiza in Three Pisum sativum L. Genotypes. J.Exp. Bot., 53: 1177–1185.
40. Sai Kachout, S., Ben Mansoura, A. J.C., Leclerc, J. C., Mechergui, R., Rejeb, M. N. and Ouerghi, Z. 2010. Effect of Heavy Metals on Antioxidant Activities of Artiplex Hortensis and A. rosea. Elect. J. Env. Agric. Food Chem., 9: 444-457.
41. Salim, R., Al-Sbbu, M. M., Douleh, A. and Khalaf, S. 1992. Effects on Growth and Uptake of Broad Bean (Vicia faba L.) by Root and Foliar Treatments of Plant with Lead and Cadmium. J. Env. Sci. Health, 27: 1619–1642.
42. Sandalio, L. M., Dalurzo, H. C., Gómez, M., Romero-Puertas, M. C. and del Río, L. A. 2001. Cadmium-induced Changes in the Growth and Oxidative Metabolism of Pea Plants. J. Exp. Bot., 52: 2115–2126.
43. Scebba, F., Arduini, I., Ercoli, L. and Sebastiani, L. 2006. Cadmium Effects on Growth and Antioxidant Enzymes Activities in Miscanthus sinensis. Biol. Plant, 50: 688-692.
44. Sieverding, E. 1991. Vesicular-arbuscular Mycorrhizal Management in Tropical Agrosystem. Bremer, Verlag, Germany, pp. 365.
45. Somashekaraiah, B. V., Padmaja, K. and Prasad, A. R. K. 1992. Phytotoxicity of Cadmium Ions on Germinating Seedlings of Mung Bean (Phaseolus vulgaris): Involvement of Lipid Peroxides in Chlorophyll Degradation. Physiol. Plant., 63: 85-89.
46. Stewart, R. C. and Bewley, J. D. 1980. Lipid Peroxidation Associated with Accelerated Ageing of Soybean Axes. Plant Physiol., 65: 245–248.
47. Stobert, A. K., Grifith, W. T., Ameen-Bukhari, I. and Sherwood, R. P. 1985. The Effect of Cd on Biosynthesis of Chlorophyll in Leaves of Barley. Physiol. Plant., 63: 293–298.
48. Turkmen, O., Sensoy, S., Demir, S. and Erdinc, C. 2008. Effects of Two Different AMF Species on Growth and Nutrient Content of Pepper Seedlings Grown under Moderate Salt Stress. African J. Biotech., 7: 392–396.
49. Vassilev, A. 2002. Physiological and Agroecological Aspects of Cadmium Interactions with Barley Plants: An Overview. J. Central Euro. Agri., 4: 66-76.
50. Weissenhorn, I. and Leyval, C. 1995. Root Colonization of Maize by a Cd-sensitive and a Cd-tolerant Glomus mosseae and Cadmium Uptake in Sand Culture. Plant Soil, 175: 233-238.
51. Yang, H. Y., Shi, G., Yu, Q. S. and Wang, H. X. 2011. Cadmium Effects on Mineral Nutrition and Stress-related Indices in Potamogeton crispus. Russian J. Plant Physiol., 58: 2530-260.