Molecular Characterization and Phylogenetic Analysis of Novel α-gliadin Genes from Triticum dicoccoides L.

Authors
College of Life Science, Henan University, Kaifeng, 475001, Henan, People's Republic of China.
Abstract
The quality traits of Triticum dicoccoides KU-13441 (Triticum turgidum L. var. dicoccoides (AABB, 2n= 4x= 28)) were analyzed by mixograph, and the results showed that T. dicoccoides KU-13441 had desirable qualities in gluten strength and flour stirring tolerance. Subsequently, seventeen novel full-ORF α-gliadin genes and thirty-five pseudogenes were cloned and sequenced from T. dicoccoides KU-13441. Among the 17 novel full-ORF α-gliadin genes, the putative proteins of Gli2-TD-44 and Gli2-TD-46 contained an extra cysteine residue, located in the first nonrepetitive region and N-terminal repetitive domain, respectively, rather than in the second nonrepetitive region like other α-gliadins. Prokaryotic expression analysis and western-blotting indicated that these two α-gliadin genes could be successfully expressed under the control of T7 promoter. According to the varying numbers of 4 typical coeliac disease toxic peptides and glutamine residues in the two ployglutamine domains among the 17 α-gliadins, Gli2-TD-39, Gli2-TD-46 and Gli2-TD-47 genes were assigned to sub-genome B and other 14 genes were assigned to sub-genome A. Phylogenetic analysis including two S-genome species, Aegilops longissima (Sl) and Aegilops speltoides (S) revealed that the α-gliadin sequences of the B genome in T. dicoccoides had closer genetic relationship with those from Ae. speltoides. This implies that Ae. speltoides might participate in the origin of wheat B genome.

Keywords


1. Anderson, O. D., Litts, J. C. and Greene, F. C. 1997. The α-gliadin Gene Family. I. Characterization of Ten New Wheat A-gliadin Genomic Clones, Evidence for Limited Sequence Conservation of Flanking DNA, and Southern Analysis of Gene Family. Theor. Appl. Genet., 95: 50-58.
2. Anikster, Y., Manisterski, J., Long, D. L. and Leonard, K. J. 2005. Leaf Rust and Stem Rust Resistance in Triticum dicoccoides Populations in Israel. Plant. Dis., 89:55-62.
3. Chen, F. G., Xu, C. H., Chen, M. Z., Wang, Y. H. and Xia, G. M. 2008. A New α-gliadin Gene Family for Wheat Breeding: Somatic Introgression Line II-12 Derived from Triticum aestivum and Agropyron elongatum. Mol. Breed, 22: 675-685.
4. Cornell, H. J. and Wills-Johnson, G. 2001. Structure-activity Relationships in Coeliac-toxic Gliadin Peptides. Amino Acids, 21: 243-253.
5. DuPont, F. M., Vensel, W., Encarnacao, T., Chan, R. and Kasarda, D. D. 2004. Similarities of Omega Gliadins from Triticum urartu to Those Encoded on Chromosome 1A of Hexaploid Wheat and Evidence for Their Post-translational Processing. Theor. Appl. Genet., 108: 1299-1308.
6. Guo, Z. F., Long, X. Y., Dong, P., Wei, Y. M., Bai, L. P., Dang, X. X., Wan, H. L., Zhang, L. J. and Zheng, Y. L. 2011. Molecular Cloning of Novel α-gliadin Genes from Crithopsis delileana and the Evolution Analysis with Those from Triticeae. Genes. Genom., 33: 155-161.
7. Haider, N. 2012. Evidence for the Origin of the B Genome of Bread Wheat Based on Chloroplast DNA. Turk. J. Agric. For., 36: 13-25.
8. Haider, N. 2013. The Origin of the B Genome of Bread Wheat (Triticum aestivum L.). Russ. J. Genet., 49: 263-274.
9. Huang, Z., Long, H., Wei, Y.M., Qi, P. F., Yan, Z. H. and Zheng, Y. L. 2010. Characterization and Classification of γ-gliadin Multigene Sequences from Aegilops Section Sitopsis. Cereal. Res. Commun., 38: 1-14.
10. Ishii, T., Mori, N. and Ogihara, Y. 2001. Evaluation of Allelic Diversity at Chloroplast Microsatellite Loci among Common Wheat and Its Ancestral Species. Theor. Appl. Genet., 103: 896-904.
11. Jin, M., Xie, Z. Z., Ge, P., Li, J., Jiang, S. S., Subburaj, S., Li, X. H., Zeller, F. J., Hsam, S. L. and Yan, Y. M. 2012. Identification and Molecular Characterization of HMW Glutenin Subunit 1By16* in Wild Emmer. J. Appl. Genet., 53: 249-258.
12. Kasarda, D. D. and D'Ovidio, R. 1999. Deduced Amino Acid Sequence of an Alpha-gliadin Gene from Spelt Wheat (Spelta) Includes Sequences Active in Celiac Disease. Cereal Chem., 76: 548-551.
13. Li, X. H., Wang, A. L., Xiao, Y. H., Yan, Y. M., He, Z. H., Appels, R., Ma, W. J., Hsam, S. L. K. and Zeller, F. J. 2008. Cloning and Characterization of a Novel Low Molecular Weight Glutenin Subunit Gene at the Glu-A3 Locus from Wild Emmer Wheat (Triticum turgidum L. var. dicoccoides). Euphytica, 159: 181-190.
14. Liu, B., Segal, G., Rong, J. K. and Feldman, M. 2003. A Chromosome-specific Sequence Common to the B Genome of Polyploid Wheat and Aegilops searsii. Plant. Syst. Evol., 241: 55-66.
15. Naghavi, M. R., Ranjbar, M., Hassani, M. H., Aghaee, M. J. and Bamneshin, M. 2013. Characterization of Iranian Accessions of Aegilpos crassa Boiss. Using Flow Cytometry and Protein Analysis. J. Agr. Sci. Tech., 15: 811-818.
16. Qi, P. F., Yue, Y. W., Long, H., Wei, Y. M., Yan, Z. H. and Zheng, Y. L. 2006. Molecular Characterization of α-gliadin Genes from Wild Emmer Wheat (Triticum dicoccoides). DNA Sequence, 17: 415-421.
17. Saitou, N. and Nei, M. 1987. The Neighbor-joining Method: A New Method of Reconstructing Phylogenetic Trees. Mol. Biol. Evol., 4: 406-425.
18. Sollid, L. M., Qiao, S. W., Anderson, R. P., Gianfrani, C. and Koning, F. 2012. Nomenclature and Listing of Celiac Disease Relevant Gluten T-cell Epitopes Restricted by HLA-DQ Molecules. Immunogenetics, 64:455-460.
19. Susan, B. A., William, H. V. and Frances, M. D. 2010. Integration of Transcriptomic and Proteomic Data from a Single Wheat Cultivar Provides New Tools for Understanding the Roles of Individual Alpha Gliadin Proteins in Flour Quality and Celiac Disease. J. Cereal Sci., 3: 1-9.
20. Tamás, L. and Shewry, P. R. 2006. Heterologous Expression and Protein Engineering of Wheat Gluten Proteins. J. Cereal Sci., 43: 259-274.
21. Van Herpen, T. W. J. M., Goryunova, S. V., van der Schoot, J., Mitreva, M., Salentijn, E., Vorst, O., Schenk, M. F., van Veelen, P. A., Koning, F., van Soest, L. J. M., Vosman, B., Bosch, D., Hamer, R. J., Gilissen, L. J. W. J. and Smulders, M. J. M. 2006. Alpha-gliadin Genes from the A, B, and D Genomes of Wheat Contain Different Sets of Celiac Disease Epitopes. BMC Genom., 7: 1.
22. Wieser, H. 2001. Comparative Investigations of Gluten Proteins from Different Wheat Species I. Qualitative and Quantitative Composition of Gluten Protein Types. Eur. Food Res. Technol., 213: 183-186.
23. Wieser, H. 2007. Chemistry of Gluten Proteins. Food Microbiol., 24: 115-119.
24. Xie, Z. Z., Wang, C. Y., Wang, K., Wang, S. L., Li, X. H., Zhang, Z., Ma, W. J. and Yan, Y. M. 2010. Molecular Characterization of the Celiac Disease Epitope Domains in α-gliadin Genes in Aegilops tauschii and Hexaploid Wheats (Triticum aestivum L.). Theor. Appl. Genet., 121: 1239-1251.
25. Xing, T. M., Huang, L. X. and Dong, Y. N. 2002. Main Characteristics and High Yield Cultivation Technology fromYumai 34. J. Triticeae Crops, 22: 101-102.
26. Xu, S. S., Khan, K., Klindworth, D. L., Faris, J. D. and Nygard, G. 2004. Chromosomal Location of Genes for Novel Glutenin Subunits and Gliadins in Wild Emmer Wheat (Triticum turgidum L. var. dicoccoides). Theor. Appl. Genet., 108: 1221-1228.
27. Yan, Y. M., Jiang, Y., An, X. L., Peia, Y. H., Li, X. H., Zhang, Y. Z., Wang, A. L., He, Z., Xi, X., Bekes, F. and Ma, W. 2009. Cloning, Expression and Functional Analysis of HMW Glutenin Subunit 1By8 Gene from Italy Pasta Wheat (Triticum turgidum L. ssp. durum). J. Cereal Sci., 50: 398-406.