Bialaphos-resistant Transgenic Soybeans Produced by the Agrobacterium-mediated Cotyledonary-node Method

Authors
1 National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing 210095, People's Republic of China.
2 College of Horticulture, Nanjing Agricultural University, Nanjing 210095, People's Republic of China.
3 Graduate School of Horticulture, Chiba University, 648 Matsudo, Matsudo-Shi, Chiba, 271-8510, Japan.
Abstract
A stable Agrobacterium-mediated transformation system was established using bialaphos as the selective agent in soybeans [Glycine max (L.) Merr.]. The cotyledonary node explants of the soybean cultivar ‘NY-1001’ were inoculated with the Agrobacterium tumefaciens strain EHA105, harboring the vector pCAMBIA3301 containing the gus gene as the reporter gene and the bar gene conferring bialaphos resistance. The highest frequency of GUS transient expression (92%) was obtained after inoculation and 4-day co-cultivation with A. tumefaciens strain EHA105. Efficient GUS expression was observed in regenerated shoots from explants after 4-day co-cultivation combined with culturing on shoot induction medium (SIM) without bialaphos for 7 days followed by 4 mg.L-1 bialaphos for 2 weeks. Bialaphos (4 mg.L-1 in SIM; 2 mg.L-1 in shoot elongation medium (SEM)) effectively selected the transformants. The putative transformants and escapes could be exactly distinguished by using a half-leaf GUS assay method to detect GUS expression in the elongated resistant shoots, which resulted in the shortening of culture period for the early detection of transformed shoots. The transformation efficiency of this system was 1.06%. The transgenic plants were verified by polymerase chain reaction (PCR), Southern blotting, and herbicide-resistant responses. All four T0 transgenic plants were fertile and transmitted the phenotypes of both gus and bar in a 3:1 ratio to their progeny. These results indicate that the established system is suitable for further breeding of herbicide-resistant transgenic cultivars, as well as for functional genomics studies of soybeans.

Keywords


1. An, G. E., Ebert, R. R., Mitra, A. and Ha, S. B. 1988. Binary Vectors. In: “Plant Molecular Biology Manual”, (Eds.): Gelvin, S. B. and Schilperoort, R. A.. Kluwer Academic Publishers, Dordrecht, PP. 1-19.
2. Aragão, F. J. L., Sarokin L., Vianna, G. R. and Rech, E. L. 2000. Selection of Transgenic Meristematic Cells Utilizing a Herbicidal Molecule Results in the Recovery of Fertile Transgenic Soybean [Glycine max (L.) Merril] Plants at a High frequency. Theor. Appl. Genet., 101: 1-6.
3. Bartlett, M. S. 1947. The Use of Transformations. Biometrics, 3: 39-52.
4. Bleho, J., Obert, B., Takáč, T., Petrovská, B., Heym, C., Menzel, D. and Šamaj, J. 2012. ER Disruption and GFP Degradation during Non-regenerable tTransformation of Flax with Agrobacterium tumefaciens. Protoplasma, 249: 53-63.
5. Botterman, J. and Leemans, J. 1988. Engineering Herbicide Resistance in Plants. Trends Genet., 4: 219-222.
6. Choi, H. J., Chandrasekhar, T., Lee, H. Y. and Kim, K. M. 2007. Production of Herbicide-resistant Transgenic Sweet Potato Plants through Agrobacterium tumefaciens Method. Plant Cell Tiss. Organ Cult., 91: 235-242.
7. Clemente, T. E., LaVallee, B. J., Howe, A. R., Conner-Ward, D., Rozman, R. J., Hunter, P. E., Broyles, D. L., Kasten, D. S. and Hinchee, M. A.. 2000. Progeny Analysis of Glyphosate Selected Transgenic Soybeans Derived from Agrobacterium-mediated transformation. Crop Sci., 40: 797-803.
8. De Block, M., De Brouwer, D. and Tenning, P. 1989. Transformation of Brassica napus and Brassica oleracea Using Agrobacterium tumefaciens and the Expression of the bar and neo Genes in the Transgenic Plants. Plant Physiol., 91: 694-701.
9. Dennehey, B. K., Petersen, W. L., Ford-Santino, C., Pajeau, M. and Armstrong, C. L. 1994. Comparison of Selective Agents for Use with the Selectable Marker Gene bar in Maize Transformation. Plant Cell Tiss. Organ Cult., 36: 1-7.
10. Di, R., Purcell, V., Collins, G. B. and Ghabrial, S. A. 1996. Production of Transgenic Soybean Lines Expressing the Bean Pod Mottle Virus Coat Protein Precursor Gene. Plant Cell Rep., 15:746-750.
11. Donaldson, P. A. and Simmonds, D. H. 2000. Susceptibility to Agrobacterium tumefaciens and Cotyledonary Node Transformation in Short-season Soybean. Plant Cell Rep., 19: 478-484.
12. D'Halluin, K., De Block, M., Denecke, J., Janssen, J., Leemans, J., Reynaerts, A. and Botterman J.. 1992. The bar Gene has Selectable and Screenable Marker in Plant Engineering. Method. Enzymol., 216: 415-426.
13. Finer, J. J. and McMullen, M. D. 1991. Transformation of Soybean via Particle Bombardment of Embryogenic Suspension Culture Tissue. In Vitro Cell. Dev. Biol. Plant, 27: 175-182.
14. Gamborg, O. L., Miller, R. A. and Ojima., K. 1968. Nutrient Requirements of Suspension Cultures of Soybean Root Cells. Exp. Cell Res., 50: 151-158.
15. Ganesan, M., Han, Y. J., Bae, T. W., Hwang, O. J., Chandrasekkhar, T., Shin, A. Y., Goh, C. H., Nishiguchi, S., Song, I. J., Lee, H. Y., Kim J. I. and Song, P. S. 2012. Overexpression of Phytochrome A and Its Hyperactive Mutant Improves Shade Tolerance and Turf Quality in Creeping Bentgrass and Zoysiagrass. Planta, 236: 1135-1150.
16. Goodwin, J. L., Pastori, G. M., Davey, M. R. and Jones., H. D. 2005. Selectable Markers: Antibiotic and Herbicide Resistance. In: “Transgenic Plants: Methods and Protocols”, (Ed.): Peña, L.. Humana Press, Totowa, NJ, PP. 191-202.
17. Hinchee, M. A. W., Connor-Ward, D. V., Newell, C. A., McDonnell, R. E., Sato, S. J., Gasser, C. S., Fischhoff, D. A., Re, D. B., Fraley, R. T. and Horsch, R. B. 1988. Production of Transgenic Soybean Plants Using Agrobacterium-mediated DNA Transfer. Nat. Biotechnol., 6: 915-922.
18. Hoshino, Y. and Mii., M. 1998. Bialaphos Stimulates Shoot Regeneration from Hairy Roots of Snapdragon (Antirrhinum majus L.) Transformed by Agrobacterium rhizogenes. Plant Cell Rep., 17: 256-261.
19. Jefferson, R. A., Kavanagh, T. A. and Bevan, M. W. 1987. GUS Fusions: β-Glucuronidase as a Sensitive and Versatile Gene Fusion Marker in Higher Plants. EMBO J., 6: 3901-3907.
20. Jin, S., Zhang, X., Nie, Y., Guo, X., Liang, S. and Zhu, H. 2006. Identification of a Novel Elite Genotype for in Vitro Culture and Genetic Transformation of Cotton. Biol. Plantarum, 50: 519-524.
21. Karaman, S., Cunnick, J. and Wang, K. 2012. Expression of the Cholera Toxin B Subunit (CT-B) in Maize Seeds and a Combined Mucosal Treatment against Cholera and Traveler’s Diarrhea. Plant Cell Rep., 31: 527-537.
22. Li, H. Y., Zhu, Y. M., Chen, Q., Conner, R. L., Ding, X. D., Li, J. and Zhang, B. B. 2004. Production of Transgenic Soybean Plants with Two Anti-fungal Protein Genes via Agrobacterium and Particle Bombardment. Biol. Plantarum, 48: 367-374.
23. Liu, S. J., Wei, Z. M. and Huang, J. Q. 2008. The Effect of Co-cultivation and Selection Parameters on Agrobacterium-mediated Transformation of Chinese Soybean Varieties. Plant Cell Rep., 27: 489-498.
24. Liu, W., Torisky, R. S., McAllister, K. P., Avdiushko, S., Hildebrand, D. and Collins, G. B. 1996. Somatic Embryo Cycling: Evaluation of a Novel Transformation and Assay System for Seed-specific Gene Expression in Soybean. Plant Cell Tiss. Organ Cult., 47: 33-42.
25. Ma, Z. Q. and Sorrells, M. E. 1995. Chromosomal Regions Linked to Restoring Genes in Two Restorers for Triticum timopheevii Cytoplasm Sterility of Wheat. Crop Sci., 35: 1137-1143.
26. Menges, M. and Murray, J. A. 2006. Synchronization, Transformation, and Cryopreservation of Suspension-cultured Cells. In: “Methods in Molecular Bilolgy”, (Eds): Salinas, J. and San chez-Serrano.. Humana Press, Totowa, NJ, PP. 45-61.
27. Meurer, C. A., Dinkins, R. D., Redmond, C. T., McAllister, K. P., Tucker, D. T., Walker, D. R., Parrott, W. A., Trick, H. N., Essig, J. S., Frantz, H. M., Finer, J. J. and Collins, G. B. 2001. Embryogenic Response of Multiple Soybean [Glycine max (L.) Merr.] Cultivars across Three Locations. In Vitro Cell Dev. Biol. Plant, 37: 62-67.
28. Montague, A., Ziauddin, A., Lee, R., Ainley, W. M. and Strommer, J. 2007. High-efficiency Phosphinothricin-based Selection for Alfalfa Transformation. Plant Cell Tiss. Organ Cult., 91: 29-36.
29. Olhoft, P. M., Bernal, L. M., Grist, L. B., Hill, D. S., Mankin, S. L., Shen, Y., Kalogerakis, M., Wiley, H., Toren, E., Song, H. S., Hillebrand, H. and Jones, T. 2007. A Novel Agrobacterium rhizogenes-mediated Transformation Method of Soybean [Glycine max (L.) Merrill] Using Primary-node Explants from Seedlings. In Vitro Cell Dev. Biol. Plant, 43: 536-549.
30. Olhoft, P. M., Donovan, C. M. and Somers, D. A. 2006. Soybean (Glycine max) Transformation Using Mature Cotyledonary Node Explants. In: “Methods in Molecular Biology”, (Ed.): Wang, K.. Humana Press, Totowa, NJ. PP. 385-396.
31. Olhoft, P. M., Flagel, L. E., Donovan, C. M. and Somers, D. A. 2003. Efficient Soybean Transformation Using Hygromycin B Selection in the Cotyledonary-node Method. Planta, 216: 723-735.
32. Olhoft, P. M., Lin, K., Galbraith, J., Nielsen, N. C. and Somers, D. A. 2001. The Role of Thiol Compounds in Increasing Agrobacterium-mediated Transformation of Soybean Cotyledonary-node Cells. Plant Cell Rep., 20: 731-737.
33. Olhoft, P. M. and Somers, D. A. 2001. L-Cysteine Increases Agrobacterium-mediated T-DNA Delivery into Soybean Cotyledonary-node Cells. Plant Cell Rep., 20: 706-711.
34. Olhoft, P. M. and Somers D. A. 2007. Soybean. In: “Biotechnology in Agriculture and Forestry”, (Eds.): Pua, E. C. and Davey, M. R.. Springer-Verlag, Berlin, PP. 3-27.
35. Paz, M. M., Martinez, J. C., Kalvig, A. B., Fonger, T. M. and Wang, K. 2006. Improved Cotyledonary Node Method Using an Alternative Explant Derived from Mature seed for Efficient Agrobacterium-mediated Soybean Transformation. Plant Cell Rep., 25: 206-213.
36. Paz, M. M., Shou, H., Guo, Z., Zhang, Z., Banerjee, A. K. and Wang, K. 2004. Assessment of Conditions Affecting Agrobacterium-mediated Soybean Transformation Using the Cotyledonary Node Explant. Euphytica, 136: 167-179.
37. Rafiee, S., Keyhani, A., Sharifi, M., Jafari, A., Mobli, H. and Tabatabaeefar, A. 2009. Thin Layer Drying Properties of Soybean (Viliamz Cultivar). J. Agr. Sci. Tech., 11: 289-300.
38. Reddy, M. S. S., Dinkins, R. D. and Collins, G. B. 2003. Gene Silencing in Transgenic Soybean Plants Transformed via Particle Bombardment. Plant Cell Rep., 21: 676-683.
39. Santarem, E. R., Trick, H. N., Essig, J. S. and Finer, J. J. 1998. Sonication-assisted Agrobacterium-mediated Transformation of Soybean Immature Cotyledons: Optimization of Transient Expression. Plant Cell Rep., 17: 752-759.
40. Singh, R. J., Klein, T. M., Mauvais, C. J., Knowlton, S., Hymowitz, T. and Kostow, C. M. 1998. Cytological Characterization of Transgenic Soybean. Theor. Appl. Genet., 96: 319-324.
41. Sokhandan-Bashir, N., Gillings, M. and Bowyer, J. M. 2012. A Dual Coat Protein Construct Establishes Resistance to Passionfruit Woodiness and Cucumber Mosaic Viruses. J. Agr. Sci. Tech., 14: 1105-1120.
42. Sumithra, S., Katageri, I. and Vamadevaiah, H. 2010. Factors Influencing Regeneration and Agrobacterium Mediated Transformation of Gossypium herbaceaum and Gossypium hirsutum Cotton Genotypes. Karnataka J. Agri. Sci., 23: 222-226.
43. Tomlin, E. S., Branch, S. R., Chamberlain, D., Gabe, H., Wright, M. S. and Stewart, C. N. 2002. Screening of Soybean, Glycine max (L.) Merrill, Lines for Somatic Embryo Induction and Maturation Capability from Immature Cotyledons. In Vitro Cell Dev. Biol. Plant, 38: 543-548.
44. Trick, H. N. and Finer, J. J. 1998. Sonication-assisted Agrobacterium-mediated Transformation of Soybean [Glycine max (L.) Merrill] Embryogenic Suspension Culture Tissue. Plant Cell Rep., 17: 482-488.
45. Xing, A., Zhang, Z., Sato, S., Staswick, P. and Clemente, T. 2000. The Use of the Two T-DNA Binary System to Derive Marker-free Transgenic Soybeans. In Vitro Cell. Dev. Biol. Plant, 36: 456-463.
46. Yamada, T., Takagi, K. and Ishimoto, M. 2012. Recent Advances in Soybean Transformation and Their Application to Molecular Breeding and Genomic Analysis. Breeding Sci., 61: 480-494.
47. Yamada, T., Watanabe, S., Arai, M., Harada, K. and Kitamura, K. 2010. Cotyledonary Node Pre-wounding with a Micro-brush Increased Frequency of Agrobacterium-mediated Transformation in Soybean. Plant Biotechnol., 27: 217-220.
48. Zeng, P., Vadnais, D. A., Zhang, Z. and Polacco, J. C. 2004. Refined Glufosinate Selection in Agrobacterium-mediated Transformation of Soybean [Glycine max (L.) Merrill]. Plant Cell Rep., 22: 478-482.
49. Zhang, Z., Xing, A., Staswick, P.E. and Clemente, T. E. 1999. The Use of Glufosinate as a Selective Agent in Agrobacterium-mediated Transformation of Soybean. Plant Cell Tiss. Organ Cult., 56: 37-46.