Presence of Multiple cry Genes in Bacillus thuringiensis Isolated from Dead Cotton Bollworm Heliothis armigera

Authors
1 Science and Research Branch, Islamic Azad University, Tehran, Islamic Republic of Iran.
2 Seed and Plant Improvement Institute, Karaj, Islamic Republic of Iran.
3 Department of Agronomy, Varamin Branch, Islamic Azad University, Islamic Republic of Iran.
4 Sugarbeet Seed Institute, Karaj, Islamic Republic of Iran.
Abstract
Cry genes encoding Cry proteins toxic to Lepidoptera, Coleoptera and Diptera species were studied in thirty seven B. thuringiensis strains isolated from twelve naturally infested Heliothis armigera larvae. To further confirm the isolates, two groups of species-indicative biochemical tests were applied while discriminative biochemical tests being employed to figure out the repetitive strains. A PCR experiment was performed using five sets of universal primers for cry1, cry2, cry3, cry4, cry7/8 genes. All strains reacted appropriately, for B. thuringiensis, to the biochemical tests and while the reactions to the discriminative tests being varied. Based upon the results of the discriminative tests, twenty four non-repetitive strains were selected and employed in the PCR assay. Each of the selected strains presented one cry gene, at least; cry1 being the most frequently detected one (91.7%), followed by cry2 (87.6%), cry3 (50%) and cry4 (42%) but no isolate harbored a coleopteran-active cry7/8 gene. All the strains presented combinations of two or more cry genes: 20% presenting cry1+cry2, 12.5% cry1+cry3, 4% cry2+cry4, 20% cry1+cry2+cry3, 20% cry1+cry2+cry4, 4% cry1+cry3+cry4 and 12.5% carrying all the four cry genes studied and only one strain bearing a single cry gene. The cry1-cry2 combination was common in many strains (72.5%). Genetic characterization of this collection provides an opportunity for selection of strains with improved and multiple insecticidal toxicity.

Keywords


1. Aronson, A.I. 1994. Bacillus thuringiensis and its use as biological insecticide. Plant Breed. Rev. 12: 9-45.
2. Arrieta, G. and Espinoza A. M. 2006. Characterisation of a Bacillus thuringiensis strain collection isolated from divers Costa Rica natural ecosystem. Rev. Biol. Trop. 54: 13-27
3. Ben-Dov, E., Manasherob, R., Zaritsky, A., Barak, Z., and Margalith, Y. 2001. PCR analysis of cry7 genes in Bacillus thuringiensis by the five conserved blocks of toxins. Cur. Microbiol. 42: 96-99.
4. Ben-Dov, E., Wang, Q., Zaritsky, A., Manasherob, R., Barak, Z., Schneider, B., Khamraev, A., Baizhanov, M., Glupov, V., and Margalith, Y. 1999. Multiplex PCR screening to detect cry9 genes in Bacillus thuringiensis strains. Appl. Environ. Microbiol. 65: 3714-3716.
5. Ben-Dov, S.E., Zaritsky, A., Dahan, E., Barak, Z., Sinai, R., Manasherob, R., Khamraev, A., Troitskaya, E., Dubitsky, A., Berezina, N. and Margalith, Y. 1997. Extended screening by PCR for seven cry-group genes from field-collected strains of Bacillus thuringiensis. Appl. Environ. Microbiol. 63: 4883-4890
6. Bourque, S. N., Vale´ro, J. R., Mercier, J., Lavoie, M.C., and Levesque, R.C. 1993. Multiplex polymerase chain reaction for detection and differentiation of the microbial insecticide Bacillus thuringiensis. Appl. Environ. Microbiol. 59: 523-527.
7. Bravo, A., Sarabia, S., López, L., Ontiveros, H., Abarca, C., Ortiz, A., Ortiz, M., Lina, L., llalobos, J., Peña, G., Noez, V., Soberón, M. and Quintero, R. 1998. Characterization of cry genes in a Mexican Bacillus thuringiensis strain collection. Appl. Environ. Microbiol. 64: 4965- 4972.
8. Carozzi, N.B., Kramer, V.C., Warren, G.W., Evola, S. and Koziel, M.G., 1991. Prediction of insecticidal activity of Bacillus thuringiensis strains by polymerase chain reaction product profiles. Appl. Environ. Microbiol. 57: 3057-3061.
9. Cinar, C., Apaydin, O., Yenidunya, A.F., Harsa S. and Gunes H. 2008. Isolation and chracterisation of Bacillus thuringiensis strains from olive-related habitats in Turkey. J. Appl. Microbiol. 104: 515-525
10. de Barjac, H., and Frachon, F. 1990. Classification of Bacillus thuringiensis strains. Entomophaga 35: 233-240.
11. Hernandez, C.S. and Ferre, J. 2005. Common receptor for Bacillus thuringiensis toxins Cry1Ac, Cry1Fa and Cry1Ja in Helicoverpa armigera, Helicoverpa zea and Spodoptera exigua. Appl. Environ. Microbiol. 71: 5627-5629
12. Juárez-Pérez, V. M., Ferrandis, M. D., and Frutos, R. 1997. PCR-based approach for detection of novel Bacillus thuringiensis cry genes. Appl. Environ. Microbiol. 63: 2997-3002.
13. Keshavarzi, M. 2008. Isolation, identification and differentaiation of local Bacillus thuringiensis strains. J. Agric. Sci. Technol. 10: 493-499
14. López-Pazos, S.A., Martinez, J.W., Castillo, A.X. and Salamanca, J.A.C. 2009. Presence and significance of Bacillus thurimgiensis Cry proteins associated with the Andean weevil Premnotrypes vorax (Coleoptera: curculionidae). Rev. Biol. Trop. 57: 1235-1243.
15. Nester, E.W., Thomashow, L.S., Metz, M., Gordon, M. 2002. 100 years of Bacillus thuringiensis: a critical sceinetifc assessment {online.}, American Society for Microbiology, Washington, D.C., http://www.asmusa.org
16. Padidam, M. 1992. The insecticidal crystal protein Cry1A(c) from Bacillus thuringiensis is highly toxic for. Heliothis armigera. J. Invertbr. Pathol. 59: 109-111.
17. Porcar, M., and Caballero, P. 2000. Molecular and insecticidal characterization of a Bacillus thuringiensis strain isolated during a natural epizootic. Appl. Microbiol. 89: 309-316.
18. Porcar, M., and Jua’rez-Pe’rez, V. 2003. PCR-based identification of Bacillus thuringiensis pesticidal crystal genes. FEMS Microbiol. Rev. 26: 419-432
19. Sahukhal, G.S., Jayana, B.L., Shrestha, U.T., Ben Dov, E., Agrawal, V.N.P. 2008. Screening of cry-type genes among Bacillus thuringiensis isolated from soil samples in Phereche and Sagarmatha national park of Mount Everest Base Camp region by PCR. J. Food Sci. Technol. Nepal 4: 74-77
20. Sauka, H.D., Cozzi, J.G., Benintende, G.B. 2006. Detection and identification of cry1I genes in Bacillus thuringiensis using PCR and Restriction Fragment Length Polymorphism analysis. Curr. Microbiol. 52: 60-63
21. Seifinejad, A., Salehi Jouzani, G.R., Hosseinzadeh, A., and Abdmishani, C. 2008. Characterization of Lepidoptera-active cry and vip genes in Iranian Bacillus thuringiensis strain collection. J. Biol. Control 44: 216-226.
22. Song, F., Zhang, J., Gu, A., Wu, Y., Han, L., He, K., Chen, Z., Yao, J., Hu, Y., Li, G. and Huang D. 2003. Identification of cry1I-type genes from Bacillus thuringiensis strains and characterization of a novel cry1I-type gene. Appl. Environ. Microbiol. 69: 5207-5211.
23. Song, L., Gao, S., Dai, Y., Wu, D. and Li, R. 2008. Specific activity of Bacillus turingiensis strain against Locusta migratora manilensis. J. Invertbr. Pathol. 98: 169-176.
24. Thammasittirong A. and Attathom T. 2008. PCR-based method for the detection of cry genes in local isolates of Bacillus thuringiensis from Thailand. J. Invertbr. Pathol. 98: 121-126.
25. Uribe, D., Martinez, W., and Cero´n, J. 2003. Distribution and diversity of cry genes in native strains of Bacillus thuringiensis obtained from different ecosystems from Colombia. J. Invertebr. Pathol. 82: 119-127.
26. Wang, J., Boets, A., Van Rie, J., and Ren, G. 2003. Characterization of cry1, cry2, and cry9 genes in Bacillus thuringiensis isolates from China. J. Invertbr Pathol. 82: 63-71.
27. Xie, L., Zhang, W., Liu, Z., Cai, Y and Fang , X. 2010. Characterization of a new highly toxic isolate of Bacillus thuringiensis from the diapausing larvae of silkworm and identification of cry1A22 gene. Bt Research (Online): Vol 1, No. 1, http://bt.sophiapublisher.com