Inter Simple Sequence Repeat Markers Associated with Flowering Time Duration in the Chilean Strawberry (Fragaria chiloensis)

Authors
1 Department of the Fruit Production, Faculty of Agronomy and Forestry Engineer, Pontifical Catholic University of Chile, Vicuña Mackenna 4860, PO Box 306, Santiago, Chile.
2 Faculty of Agricultural Sciences, University of Talca, 2 Norte No 845, Talca, Chile.
3 Institute of Plant Biology and Biotechnology, University of Talca, 2 Norte No 845, Talca, Chile.
4 Department of Forest Sciences, Faculty of Agriculture and Forestry Sciences, Catholic University of Maule, Avda, San Miguel Nº 3605, P. O. Box: 617, Talca, Chile.
Abstract
The flowering and fructification period of the Chilean strawberry (Fragaria chiloensis (L.) Duch.) is restricted to approximately 2 mo, which seriously limits the commercial development of the species. The objective of the current investigation was to identify Inter Simple Sequence Repeat (ISSR) polymorphisms associated with flowering duration in accessions of F. chiloensis. The flowering duration data related to 41 accessions obtained over 3 years were analyzed, and a set of 40 ISSR primers tested. Two clusters were obtained through the Partitioning Around Medoids algorithm, with 23 vs. 18 accessions, and 64.1 vs. 95.6 days of flowering, respectively. Flowering duration, between the two groups, was significantly different. The years also revealed a significant effect, on flowering duration, between the two groups. Ten of the ISSR primers tested revealed reproducible and consistent banding patterns, displaying a total of 106 putative loci, of which 79 were polymorphic. Three ISSR loci (811779, 844670, 841980) were identified owing to their significant contribution to the differentiation among the accessions. Similarly, three ISSR loci (811600, 8121180, 841980) exhibited a significant correlation with the flowering duration variation. Locus 841980, which presented the highest level of correlation with flowering duration, was isolated, cloned and sequenced, but it showed only a low level of homology with the relevant sequences published in the GenBank database. The identified loci showing high correlation with the flowering time could help build Quantitative Trait Loci (QTL) maps for selection and improvement programs in the Fragaria sp. genus or other related species.

Keywords


1. Albani, M.C., Battey, N.H., Wilkinson, M.J. 2004. The development of ISSR-derived SCAR markers around the SEASONAL FLOWERING LOCUS (SFL) in Fragaria vesca. Theoretical and Applied Genetics, 109 (3): 571-579.
2. Ashley, M. V., Wilk, J. A., Styan, S. M. N., Craft, K. J., Jones, K. L., Feldheim, K. A., Lewers, K. S. and Ashman, T. L. 2003. High variability and disomic segregation of microsatellites in octoploid Fragaria virginiana Mill. (Rosaceae). Theor. Appl. Gen., 107: 1201-1207.
3. Becerra, V., Paredes, C., Romero, O. and Lavin, A. 2001. Biochemical and molecular diversity in Chilean strawberries (Fragaria chiloensis L. Duch.) and its implication for genetic improvement of the species. Agricultura Técnica, 61(4): 413-428.
4. Buckler, E. S. and Thornsberry, J. 2002. Plant molecular diversity and applications to genomics. Curr. Opin. Plant Biol., 5: 107-111.
5. Carrasco, B., Garces, M., Rojas, P., Saud, G., Herrera, R., Retamales, J. B. and Caligari, P. D. S. 2007. The Chilean strawberry [Fragaria chiloensis (L.) Duch.]: Genetic diversity and structure. J. Am. Soc. Hortic. Sci., 132(4): 501-506.
6. Cekic, C., Battey, N. H. and Wilkinson, M. J. 2001. The potential of ISSR-PCR primer-pair combinations for genetic linkage analysis using the seasonal flowering locus in Fragaria as a model. Theor. Appl. Gen., 103(4): 540-546.
7. Chatterjee, S. N. and Mohandas, T. P. 2003. Identification of ISSR markers associated with productivity traits in silkworm, Bombyx mori L. Genome, 46(3): 438-47.
8. Darnell, R. L., Cantliffe, D. J., Kirschbaum, D. S. and Chandler, C. K. 2003. The physiology of flowering in strawberry. Hortic. Rev., 28: 325–349.
9. de la Chapelle, A. and Wright, F. A. 1998. Linkage disequilibrium mapping in isolated populations: the example of Finland revisited. PNAS, 95(21): 12416-23.
10. Debnath, S. C., Khanizadeh, S., Jamieson, A. R., Kempler, C. 2008. Inter Simple Sequence Repeat (ISSR) markers to assess genetic diversity and relatedness within strawberry genotypes. Canadian Journal of Plant Science, 88 (2): 313-322.
11. Doerge, R. W. 2002. Mapping and analysis of quantitative trait loci in experimental populations. Nat. Rev. Genet., 3: 43-52.
12. Durner, E. F., Barden, J. A., Himelrick, D. G. and Poling, E. B. 1984. Photoperiod and temperature effects on flower and runner development in day-neutral, Junebearing, and Everbearing Strawberries. J. Am. Soc. Hortic. Sci., 109(3): 396-400.
13. Epperson, B. K. and Allard, R. W. 1987. Linkage disequilibrium between allozymes in natural populations of lodgepole pine. Genetics, 115: 341-352.
14. Excoffier, L., Smouse, P. E. and Quattro, J. M. 1992. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics, 131: 479-491.
15. Falconer, D. S. and Mackay, T. F. C. 1996. Introduction to Quantitative Genetics, Ed 4. Longmans Green, Harlow, Essex, UK.
16. Flint-Garcia, S. A., Thornsberry, J. M. and Buckler, E. S. 2003. Structure of linkage disequilibrium in plants. Annu. Rev. Plant Biol., 54: 357–374.
17. Hancock, J. F., Callow, P. W., Serce, S. and Son, P. Q. 2003. Variation in the horticultural characteristics of native Fragaria virginiana and F. chiloensis from North and South America. J. Am. Soc. Hortic. Sci., 128(2): 201-208.
18. Hancock, J. F., Lavin, A. and Retamales, J. B. 1999. Our southern strawberry heritage: Fragaria chiloensis of Chile. Hortscience, 34(5): 814-816.
19. Kaufman, L. and Rousseeuw, P. J. 1990. Finding groups in data: an introduction to cluster analysis. Wiley, New York
20. Kearsey, M. J. and Farquhar, A. G. L. 1998. QTL analysis in plants; where are we now? Heredity, 80: 137-142.
21. Lavín, A. and Maureira, M. 2000. La frutilla chilena de fruto blanco. Boletín INIA Nº 39 Cauquenes, Chile.
22. Lavín, A., del Pozo, A. and Maureira, M. 2000. Distribución de Fragaria chiloenesis (L.) Duch. en Chile. Plant Genet. Resour., 122: 24-28.
23. Li, W., Xia, L. Q. and Wang, G. X. 2004. Genetic diversity of Potamogeton maackianus in the Yangtze river. Aquat. Bot., 80: 227-240.
24. Li, Y. C., Korol, A. B., Fahima, T., Beiles, A. and Nevo, E. 2002. Microsatellites: genomic distribution, putative functions and mutational mechanisms: a review. Mol. Ecol., 11: 2453-2465.
25. Long, J. C., Williams, R. C. and Urbanek, M. 1995. An E-M algorithm and testing strategy for multiple-locus haplotypes. Am. J. Hum. Genet., 56: 799–810.
26. Mackay, T. F. C. 2001. Quantitative trait loci in Drosophila. Nat. Rev. Genet., 2: 11–20.
27. Mauricio, R. 2001. Mapping quantitative trait loci in plants: uses and caveats for evolutionary biology. Nat. Rev. Genet., 2: 370-381.
28. Morales, R.G.F., Resende, J.T.V., Faria, M.V., Andrade, M.C., Resende, L.V., Delatorre, C.A., Da Silva, P.R. 2011. Genetic similarity among strawberry cultivars assessed by RAPD and ISSR markers markers. Sci. Agric., 68 (6): 665-670.
29. Morgante, M., Hanafey, M. and Powell, W. 2002. Microsatellites are preferentially associated with non repetitive DNA in plant genomes. Nat. Genet., 30: 194-200.
30. Nei, M. 1987. Molecular evolutionary genetics. Columbia University Press, New York.
31. Pritchard, J. K. and Wen, W. 2003. Documentation for STRUCTURE Software: Version 2. [Online] Available: http://pritch.bsd.uchicago/edu. [2012 Sept. 07]
32. Pritchard, J. K., Stephens, M., Rosenberg, N. A. and Donnelly, P. 2000. Association zapping in structured populations. Am. J. Hum. Genet., 67: 170–181.
33. Rai, R., Kulkarni, V. and Saranath, D. 2004. Genome wide instability scanning in chewing-tobacco associated oral cancer using inter simple sequence repeat PCR. Oral Oncol., 40: 1033-1039.
34. Remington, D. L., Thornsberry, J. M., Matsuoka, Y., Wilson, L. M., Whitt, S. R., Doebley, J., Kresovich, S., Goodman, M. M. and Buckler, E. S. 2001. Structure of linkage disequilibrium and phenotypic associations in the maize genome. PNAS, 98: 11479–11484.
35. Retamales, J. B., Caligari, P. D. S., Carrasco, B and Saud, G. 2005. Current status of the Chilean native strawberry (Fragaria chiloensis L Duch) and the research needs to convert the species into a commercial crop. HortScience, 40: 1633-1634.
36. Risch, N. and Merikangas, K. 1996. The future of genetic studies of complex human diseases. Science, 273: 1516–1517.
37. Schneider, S., Roessli, D. and Excoffier, L. 2000. Arlequin: a software for population genetics data analysis User manual ver 2.000. Genetics and Biometry Lab, Dept. of Anthropology, University of Geneva, SW.
38. Tanksley, S. D. 1993. Mapping polygenes. Annu. Rev. Genet., 27: 205-233.
39. Thornsberry, J. M., Goodman, M. M., Doebley, J., Kresovich, S., Nielsen, D. and Buckler, E. S. 2001. Dwarf8 polymorphisms associate with variation in flowering time. Nat. Genet., 28: 286–289.
40. Whitt, S. R., Wilson, L. M., Tenaillon, M. I., Gaut, B. S. and Buckler, IV, E. S. 2002. Genetic diversity and selection in the maize starch pathway. PNAS, 99: 12959–12962.
41. Wiesnerová, D. and Wiesner, I. 2004. ISSR-based clustering of flax germplasm is statistically correlated to thousand seed mass. Mol. Biotechnol., 26(3): 207-214.
42. Wilson, L.M., Whitt, S. R., Ibáñez, A. M., Rocheford, T. R., Goodman, M. M. and Buckler, E. S. 2004. Dissection of maize kernel composition and starch production by candidate gene association. Plant Cell, 16: 2719–2733.
43. Wolfe, A. D. and Liston, A. 1998. Contributions of PCR-based methods to plant systematics and evolutionary biology. In: Soltis, D. E., Soltis, P. S., Doyle, J. J. (ed) Molecular Systematics of Plants. 2nd edn. Kluwer Academic Publishers, Boston, pp 43-86.
44. Yano, M. 2001. Genetic and molecular dissection of naturally occurring variations. Curr. Opin. Plant Biol., 4: 130–135.
45. Yano, M. and Sasaki, T. 1997. Genetic and molecular dissection of quantitative traits in rice. Plant Mol. Biol., 35(1-2): 145–153.
46. Yeh, F. C. and Boyle, T. 1996. POPGENE v1.1. Microsoft Windows-based software for population genetic analysis. University of Alberta, Edmonton.