Carbohydrates and Sucrose Metabolizing Enzymes in the Leaves of Vigna mungo Genotypes as Influenced by Elevated CO2 Concentration

Authors
Central Research Institute for Dryland Agriculture, Santoshnagar, Hyderabad-500059 Andhra Pradesh, India.
Abstract
Effect of different CO2 concentrations on sucrose metabolizing enzymes and on carbohydrate metabolism was studied for eight blackgram (Vigna mungo L. Hepper) genotypes grown in open top chambers under ambient (380 µmol mol-1) vs. elevated CO2 (550 and 700 µmol mol-1) levels. The higher acid invertase activity over neutral invertase indicated the major role of acid invertase in sucrose breakdown. Higher acid invertase activity over Sucrose Synthase (SuSy) suggested the major role of invertase in sucrose breakdown and sucrolysis. Sucrose Phosphate Synthase (SPS) activity did not match with sucrose pool sizes in mature leaves and rather varied among genotypes. Plants exposed to higher CO2 concentrations showed higher starch and sucrose contents as compared with those exposed to ambient CO2. Leaf starch content being found several-folds higher than sucrose throughout the study indicated its major role in regulating assimilate partitioning. Increase in glucose vs. fructose concentrations for genotypes grown under elevated CO2 conditions ranged from 20 to 90% and from 10 to 140%, respectively. The hexoses/sucrose ratio for elevated CO2 concentration was approximately 0.8-1.6, however for ambient CO2 content it approximately amounted to unity. Genotypes IC436720, IC519805, IC343952, and IC282009 with low hexose/sucrose ratio representing high CO2 assimilation along with high sucrose formation indicated better tolerance to elevated CO2 for carbon partitioning and carbohydrate metabolism. The up-regulation of leaf carbohydrate metabolizing enzymes of low hexose/sucrose as well as low sucrose/starch ratios for the genotype IC436720 (as compared with other genotypes) improved its photosynthetic capability which coupled with its better efficiency of carbon partitioning (indicative of better acclimation to elevated CO2) could prove beneficial to its growth and productivity in the future change of climatic conditions.

Keywords


1. Ainsworth, E. A. and Rogers, A. 2007. The response of photosynthesis and stomatal conductance to rising (CO2): mechanisms and environmental interactions. Plant Cell Environ., 30: 258-270.
2. Bowes, G. 1993. Facing the inevitable: plants and increasing atmospheric CO2. Ann. Rev. Plant Physiol. Plant Mol. Bio., 44: 309–332.
3. Drake, B.G., Gonzalez-Meler, M.A. and Long, S.P. 1997. More efficient plants: a consequence of rising atmospheric CO2? Ann. Rev. Plant Physiol. Plant Mol. Bio., 48: 609–639.
4. Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A. and Smith, F. 1956. Colorimetric method for the determination of sugars and related substances. Anal. Chem., 28: 350–356.
5. Galtier, N., Foyer, C. H., Murchie, E., Alred, R. and Quick, P. 1995. Effects of light and atmospheric carbon dioxide enrichment on photosynthesis and carbon partitioning in the leaves of tomato (Lycopersicon esculentum L.) plants over-expressing sucrose phosphate synthase. J. Exp. Bot., 46: 1335-44.
6. Huber, S. C. and Huber, J. L. 1996. Role and regulation of sucrose phosphate synthase in higher plants. Ann. Rev. Plant Physiol. Plant Mol. Bio., 47: 431-444.
7. Huber, S.C. 1989. Biochemical mechanism for regulation of sucrose accumulation in leaves during photosynthesis. Plant Physiol., 91: 65-62.
8. Hussain, M. W., Allen Jr, L. H. and Bowes, G. 1999. Up-regulation of sucrose phosphate synthase in rice grown under elevated CO2 and temperature. Photosynth. Res., 60: 199–208.
9. Islam, M. S. and Khan, S. 2001. Seasonal fluctuation of carbohydrate accumulation and metabolism of three tomato (Lycopersicon esculantum mill.) cultivars grown in seven different sowing times. J. Hort. Sci. Biotech., 77: 764-70.
10. Islam, S., Khan, S. and Garner, J. 2006. Elevated atmospheric CO2 concentration enhances carbohydrate metabolism in developing Lycopersicon esculentum mill. Cultivars. Int. J Agri. Biol., 8(2): 157-161.
11. Jenner, C. F. and Hawker, J. S. 1993. Sink strength: soluble starch synthase as a measure of sink strength in wheat endosperm. Plant Cell Environ., 16: 1023-1024.
12. Katny, M. A. C., Thoma, G. H., Schrier, A. A., Fangmeier, A., Jager, A. J. and Bel, A. J. E. 2005. Increase of photosynthesis and starch in potato under elevated CO2 is dependent on leaf age. J. Plant Physiol., 162: 429-438.
13. Long, S. P. and Ainsworth, E. A. 2006. Food for thought: Lower-than-expected crop yield stimulation with rising CO2 concentrations. Science, 312: 1918-1921.
14. Lowry, O. H., Rosenbrough, N. J., Farr, A. L. and Randall, R. J. 1951. Protein measurement with the folin phenol reagent. J. Biol. Chem., 193: 265–275.
15. Ludewig, F., Sonnewald, U., Kauder, F., Heineke, D., Geiger, M., Stitt, M., Muller-Rober, B., Gillissen, B., Kuhn, C. and Frommer, W. 1998. The role of transient starch in acclimation to elevated atmospheric CO2. FEBS Lett., 429:147–51.
16. Miller, G. L. 1972. Use of dinitrosalicylic acid reagent for determination of reducing sugars. Anal. Chem., 31: 426-428.
17. Moore, B. D., Cheng, S. H., Rice, J. and Seemann, J. R. 1998. Sucrose cycling, rubisco expression and prediction of photosynthetic acclimation to elevated atmospheric CO2. Plant Cell Environ., 21:905-915.
18. Murchie, E. H., Sarrobert, C. P., Contard, P. T., Betsche, T. C. H., Foyer, C. H. and Galtier, N. 1999. Over-expression of sucrose phosphate synthase in tomato plants grown with CO2 enrichment leads to decreased foliar carbohydrate accumulation relative to untransformed controls. Plant Physiol. Biochem., 37: 251–60.
19. Paul, M. J. and Foyer, C. H. 2001. Sink regulation of photosynthesis. J. Exp. Bot., 52 (360): 1383-1400.
20. Pego, J. V., Kortstee, A. J., Huijser, C. and Smeekens, S. C. M. 2000. Photosynthesis. Sugar and regulation of gene expression. J. Exp. Bot., 51: 407-416.
21. Riffkin, H. L., Duffus, C. M. and Bridges, I. C. 1995. Sucrose metabolism during endosperm development in wheat (Triticum aestivum). Physiol. Plantarum, 93: 123–131.
22. Rogers, A. and Ainsworth, E. 2009. Will elevated carbon dioxide concentration amplify the benefits of nitrogen fixation in legumes? Plant Physiol., 151: 1009-1016.
23. Scott, T. A. and Melvin, E. H. 1956. Anthrone colorimetric method. In: Whistler, R. L. and Walfrom, M. L. (eds.) “Methods in Carbohydrate Chemistry”, Academic Press, New York – London. 1: pp. 384.
24. Signora, L., Galtier, N., Skot, L., Lucas, H. and Foyer, C. H. 1998. Over-expression of sucrose phosphate synthase in Arabidopsis thaliana results in increased foliar sucrose/starch ratios and favours decreased foliar carbohydrate accumulation in plants after prolonged growth with CO2 enrichment. J. Exp. Bot. 49: 669-680.
25. Stepansky, A., Kovalski, I., Schaffer, A. A. and PerlTreves, R. 1999. Variation in sugar levels and invertase activity in mature fruit representing a broad spectrum of Cucumis melo genotypes. Genet. Res. Crop Evol., 46: 53–62.
26. Stitt, M., Wilke, I., Feil, R. and Heldt, H. W. 1988. Coarse control of sucrose-phosphate synthase in leaves: Alterations of the kinetic properties in response to the rate of photosynthesis and the accumulation of sucrose. Planta, 174: 217-230.
27. Sung, S. J. S., Xu, D. P. and Black, C. C. 1989. Identification of actively filling sucrose sinks. Plant Physiol., 89: 1117–1121.
28. Urbonaviciute, A., Samuoliene, G., Sakalauskaite, J., Duchovskis, P., Brazaityte, A., Siksnianiene, J. B., Ulinskaite, R. Sabajeviene, G. and Baranauskis, K. 2006. The Effect of Elevated CO2 concentrations on leaf carbohydrate, chlorophyll contents and photosynthesis in radish. Polish J. Environ. Stud., 15(6): 921-925.
29. Van den Ende, W. and Van Laere, A. 1995. Purification and properties of a neutral invertase from the roots of Cichorium intybus. Physiol. Plantarum, 93: 241-248.
30. Van Oosten, J. J. and Besford, R. T. 1996. Acclimation of photosynthesis to elevated CO2 through feedback regulation of gene expression: Climate of opinion. Photosynth. Res., 48: 353-365.
31. Vanaja, M., Ratnakumar, P., Vagheera, P., Jyothi, M., Raghuram Reddy, P., Jyothi Lakshmi, N., Maheshwari, M. and Yadav, S. K. 2006. Initial growth responses of' blackgram (Vigna mungo L. Hepper) under elevated CO2 and moisture stress. Plant Soil Environ., 52 (11): 499–504.
32. Vara Prasad, P. V., Boote, K. J., Vu, J. C. V. and Allen, H. 2004. The carbohydrate metabolism enzymes sucrose phosphate synthase and ADG-pyrophosphorylase in phaseolus bean leaves are up-regulated at elevated growth carbon dioxide and temperature. Plant Sci., 166: 1565-1573.
33. Vara Prasad, P. V., Joseph, C. V., Vu, K. J., Boote, L. and Allen, H. 2009. Enhancement in leaf photosynthesis and up-regulation of rubisco in the C4 sorghum plant at elevated growth carbon dioxide and temperature occur at early stages of leaf ontogeny. Func. Plant Biol., 36(9): 761–769.
34. Vu, J. C. V., Allen, L. H. and Gesch, R. W. 2006. Up-regulation of photosynthesis and sucrose metabolizing enzymes in young expending leaves of sugarcane under elevated growth CO2. Plant Sci., 171: 123-131.
35. Vu, J. C. V., Gesch, R. W., Pennanen, A. H., Allen, L. H., Boote, K. J. and Bowes G. 2001. Soybean photosynthesis, rubisco, and carbohydrate enzyme function at supraoptimal temperatures in CO2. J. Plant Physiol., 158: 295–307.
36. Walter, A., Christ, M., Barron-Gafford, G., Grieve, K., Murthy, R. and Ras Cher, U. 2005. The effect of elevated CO2 on diel leaf growth cycle, leaf carbohydrate content and canopy growth performance of Populus deltoides. Glob. Change Biol., 11:1207.
37. Ziska, L. H. 2008. Rising atmospheric carbon dioxide and plant biology: the overlooked paradigm. In: Kleinman, D. L. and Cloud-Hansen, K. A. (eds.) “Controversies in science and technology, from climate to chromosomes”, New Rochele: Liebert, Inc. pp. 379-400.