Numerical Simulation and Experimental Study on a New Type of Variable-rate Fluidic Sprinkler

Authors
Research Center of Fluid Machinery Engineering and Technology, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, China.
Abstract
Due to the complex structure of the pressure-adjusting device used in most sprinklers for variable irrigation, it is not possible to observe the flow behavior of the water passing through the flow field. In this paper, an integral three dimensional (3D) numerical model based on the structural characteristics of the fluidic sprinkler was constructed to simulate the flow field distribution using computational fluid dynamics (CFD). A new type of fluid sprinkler (BPXH) was used in the experiments. The main stream region and the variable velocity regions were clearly distinguished, and the details of the variations in pressure are discussed. The results indicated that the simulation methodology generated sufficient data to analyze the sprinkler pressure and outlet velocity changes. The minimum error of the difference between the simulation and the test pressure values was 0.049, with a maximum of 0.14. The turbulence model could accurately predict the relationship between the outlet velocity and the wetted radius. The outlet velocity ranged from 12.6 to 17.9 m s-1 during the simulation under the variable inlet boundary conditions of the sprinkler. Both the simulation and test values of the wetted radius increased gradually with the sprinkler rotating angle. The absolute error of the simulation and the test ranged from 0.07 to 0.16. Computational fluid dynamics provides a promising tool to help in the design of pressure-adjusting devices using a new type of variable-rate fluidic sprinkler.

Keywords


1. Ahmadi, M. M., Ayyoubazdeh, S. A., Montazeri Namin, M. and Samani, M.V. A 2D Numerical Depth-averaged Model for Unsteady Flow in Open Channel Bends. 2009. J. Agr. Sci. Tech., 11: 457-468.
2. John D., Anderson J. R. 2004. Computational Fluid Dynamics: The Basics with Applications. Tsinghua University Press, Beijing, China.
3. ASABE Standards. R2007. S398.1: Procedure for Sprinkler Testing and Performance Reporting. ASABE, St. Joseph, Mich.
4. ASABE Standards. R2007. S436.1: Test Procedure for Determining the Uniformity of Water Distribution of Center Pivot and Lateral Move Irrigation Machines Equipped with Spray or Sprinkler Nozzles. ASABE, St. Joseph, Mich.
5. Christiansen, J. E. 1942. Irrigation by Sprinkling. California Agricultural Experiment Station Bulletin 670, University of California, Berkeley, California.
6. Fraisse, C. W., Duke, H. R. and Heermann, D. F. 1995. Laboratory Evaluation of Variable Water Application with Pulse Irrigation. Trans. ASAE, 38 (5) : 1363-1369.
7. Hendawi, M., Molle, B., Folton, C. and Granier, J. 2005. Measurement Accuracy Analysis of Sprinkler Irrigation Rainfall in Relation to Collector Shape. J. Irri. Drain. Eng., 131(5): 477-483.
8. Keller, J. and Bliesner, R. D. 1990. Sprinkler and Trickle Irrigation. Van Nostrand Reinhold, New York, NY, 652 PP.
9. Li, H., Yuan, S. Q., Xiang, Q. J., Wang, C. 2010. Theoretical and Experimental Study on Water Offset Flow in Fluidic Component of Fluidic Sprinklers. J. Irrig. Drain. Eng., 137(4): 234-243.
10. Li, H., Xie, F. Q., Lang, T., Tang, Y., Jin, S. D. 2004. Research Status in Quo and Development Trend in Full-jet-flow Sprinkler Head. China Rural Water Hydropower, (3): 90-92.
11. Li, J., Li, Y., Kawano, H. and Yoder, R. E. 1995. Effects of Double-rectangular-slot Design on Impact Sprinkler Nozzle. Trans. ASAE, 38(5): 1435-1441.
12. Perry, C. D., Dukes, M. D. and Harrison, K. A. 2004. Effects of Variable-rate Sprinkler Cycling on Irrigation Uniformity. ASAE Annual International Meeting, Ottawa, Canada. PP. 879-889.
13. Sourell, H., Faci, J. M. and Playán, E. 2003. Performance of Rotating Spray Plate Sprinklers in Indoor Experiments. J. Irri. Drain. Eng., 129(5): 376-380.
14. Tuo, Y. F., Yang, L. H., Chai, C. L., Gao, H. Y. 2006. Experimental Study and Theoretical Formula of the Sprinkler Wetted Radius. Trans. CSAE, 22(1): 23-26.
15. Tso, T. C. 2004. Agriculture of the Future. Nature, 428: 215-217.
16. Van Doormal, J. P. and Raithby, G. G. 1984. Enhancement of the SIMPLE Method for Predicting Incompressible Fluid Flows. Numer Heat Transf, 7: 147–163.
17. Wang, F. J. and Wang, W. E. 2006. Research Progress in Analysis of Flow Passage in Irrigation Emitters Using Computational Fluid Dynamics Techniques. Trans. CSAE, 22(7):118-122.
18. Yan, H. J. and Jin, H. Z. 2004. Study on the Discharge Coefficient of Non-rottable Sprays for Center-Pivot System. J. Irrig. Drain., 23(2): 55-58.
19. Yan, H. J., Ou, Y. J., Kazuhiro.Nakano, Xu, C. B. 2009. Numerical and Experimental Investigations on Internal Flow Characteristic in the Impact Sprinkler. Irri. Drain. Sys., 23: 11-23.
20. Yan, H. J., Liu, Z. Q., Wang, F. X., Yang, X. G., Wang, M. 2007. Research and Development of Impact Sprinkler in China. J. China Agricultural University, 12(1):77-80.
21. Yuan, S. Q., Zhu, X. Y., Li, H., Ren, Z. Y. 2005. Numerical Simulation of Inner Flow for Complete Fluidic Sprinkler Using Computational Fluid Dynamics. Trans. CSAM, 36(10): 46-49.